【线性方程组】

非齐次线性方程组

A x = b Ax=b Ax=b

  • 无解的充要条件
    R ( A ) < R ( A , b ) R(A)<R(A,b) R(A)<R(A,b)
  • 有唯一解
    R ( A ) = R ( A , b ) = n ∣ A ∣ ≠ 0 R(A)=R(A,b)=n\\ |A|\neq 0 R(A)=R(A,b)=nA=0
  • 有无穷多解
    R ( A ) = R ( A , b ) < n ∣ A ∣ = 0 R(A)=R(A,b)<n\\ |A|=0 R(A)=R(A,b)<nA=0

x 1 = η 1 , x 2 = η 2 x_1=\eta_1,x_2=\eta_2 x1=η1,x2=η2 A x = b Ax=b Ax=b的解:
⇒ x = η 1 − η 2 为其 A x = 0 的解 \Rightarrow x=\eta_1-\eta_2\text{为其}Ax=0\text{的解} x=η1η2为其Ax=0的解

x = η x=\eta x=η A x = b Ax=b Ax=b的解, x = ξ x=\xi x=ξ是其 A x = 0 Ax=0 Ax=0的解:
⇒ x = ξ + η 是 A x = b 的解 \Rightarrow x=\xi+\eta\text{是}Ax=b\text{的解} x=ξ+ηAx=b的解
其中 ξ \xi ξ是齐次方程的通解 η \eta η是非齐次方程的一个特解

习题

1、分别用克拉默法则和逆矩阵方法求解线性方程组。

{ x 1 − x 2 − x 3 = 2 2 x 1 − x 2 − 3 x 3 = 1 3 x 1 + 2 x 2 − 5 x 3 = 0 \begin{cases} x_1-x_2-x_3=2\\ 2x_1-x_2-3x_3=1\\ 3x_1+2x_2-5x_3=0 \end{cases} x1x2x3=22x1x23x3=13x1+2x25x3=0
解:1)
∣ A ∣ = ∣ 1 − 1 − 1 2 − 1 − 3 3 2 − 5 ∣ = ∣ 1 − 1 − 1 0 1 − 1 0 5 − 2 ∣ = − 2 + 5 = 3 ≠ 0 ( 有唯一解 ) ⇒ x 1 = ∣ 2 − 1 − 1 1 − 1 − 3 0 2 − 5 ∣ ∣ A ∣ = ∣ 0 1 5 1 − 1 − 3 0 2 − 5 ∣ 3 = − ∣ 1 5 2 − 5 ∣ 3 = − ( − 5 − 10 ) 3 = 5 x 2 = ∣ 1 2 − 1 2 1 − 3 3 0 − 5 ∣ ∣ A ∣ = ∣ − 3 0 5 2 1 − 3 3 0 − 5 ∣ 3 = ∣ − 3 5 3 − 5 ∣ 3 = 0 x 3 = ∣ 1 − 1 2 2 − 1 1 3 2 0 ∣ ∣ A ∣ = ∣ − 3 1 0 2 − 1 1 3 2 0 ∣ 3 = − ∣ − 3 1 3 2 ∣ 3 = − ( − 6 − 3 ) 3 = 3 |A|=\left| \begin{matrix} 1 & -1 & -1\\ 2 & -1 & -3\\ 3 & 2 & -5 \end{matrix} \right|=\left| \begin{matrix} 1 & -1 & -1\\ 0 & 1 & -1\\ 0 & 5 & -2 \end{matrix} \right|=-2+5=3\neq 0(\text{有唯一解})\\ \Rightarrow x_1=\frac{\left| \begin{matrix} 2 & -1 & -1\\ 1 & -1 & -3\\ 0 & 2 & -5 \end{matrix} \right|}{|A|}=\frac{\left| \begin{matrix} 0 & 1 & 5\\ 1 & -1 & -3\\ 0 & 2 & -5 \end{matrix} \right|}{3}=\frac{-\left| \begin{matrix} 1 & 5\\ 2 & -5 \end{matrix} \right|}{3}=\frac{-(-5-10)}{3}=5\\ x_2=\frac{\left| \begin{matrix} 1 & 2 & -1\\ 2 & 1 & -3\\ 3 & 0 & -5 \end{matrix} \right|}{|A|}=\frac{\left| \begin{matrix} -3 & 0 & 5\\ 2 & 1 & -3\\ 3 & 0 & -5 \end{matrix} \right|}{3}=\frac{\left| \begin{matrix} -3 & 5\\ 3 & -5 \end{matrix} \right|}{3}=0\\ x_3=\frac{\left| \begin{matrix} 1 & -1 & 2\\ 2 & -1 & 1\\ 3 & 2 & 0 \end{matrix} \right|}{|A|}=\frac{\left| \begin{matrix} -3 & 1 & 0\\ 2 & -1 & 1\\ 3 & 2 & 0 \end{matrix} \right|}{3}=\frac{-\left| \begin{matrix} -3 & 1\\ 3 & 2 \end{matrix} \right|}{3}=\frac{-(-6-3)}{3}=3 A= 123112135 = 100115112 =2+5=3=0(有唯一解)x1=A 210112135 =3 010112535 =3 1255 =3(510)=5x2=A 123210135 =3 323010535 =3 3355 =0x3=A 123112210 =3 323112010 =3 3312 =3(63)=3
2)

A x = b ⇒ x = A − 1 b = ( 11 3 − 7 3 2 3 1 3 − 2 3 1 3 7 3 − 5 3 1 3 ) ( 2 1 0 ) = ( 5 0 3 ) Ax=b\Rightarrow x=A^{-1}b=\left( \begin{matrix} \frac{11}{3} & -\frac{7}{3} & \frac{2}{3}\\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3}\\ \frac{7}{3} & -\frac{5}{3} & \frac{1}{3} \end{matrix} \right)\left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 5\\ 0\\ 3 \end{matrix} \right) Ax=bx=A1b= 3113137373235323131 210 = 503

2、设有线性方程组:
{ ( 1 + λ ) x 1 + x 2 + x 3 = 0 x 1 + ( 1 + λ ) x 2 + x 3 = 3 x 1 + x 2 + ( 1 + λ ) x 3 = λ \begin{cases} (1+\lambda)x_1+x_2+x_3=0\\ x_1+(1+\lambda)x_2+x_3=3\\ x_1+x_2+(1+\lambda)x_3=\lambda \end{cases} (1+λ)x1+x2+x3=0x1+(1+λ)x2+x3=3x1+x2+(1+λ)x3=λ
λ \lambda λ取何值时,此方程组:
(1)有唯一解;
(2)无解;
(3)有无穷多解?且求其解。

解:
( 1 + λ 1 1 0 1 1 + λ 1 3 1 1 1 + λ λ ) → ( 1 1 1 + λ λ 1 1 + λ 1 3 1 + λ 1 1 0 ) → ( 1 1 1 + λ λ 0 λ − λ 3 − λ 0 − λ − 2 λ − λ 2 − λ − λ 2 ) → ( 1 1 1 + λ λ 0 λ − λ 3 − λ 0 0 − 3 λ − λ 2 3 − 2 λ − λ 2 ) → ( 1 1 1 + λ λ 0 λ − λ 3 − λ 0 0 − λ ( 3 + λ ) ( − λ + 1 ) ( λ + 3 ) ) \left( \begin{matrix} 1+\lambda & 1 & 1 & 0\\ 1 & 1+\lambda& 1 & 3\\ 1 & 1 & 1+\lambda & \lambda \end{matrix} \right)\to \left( \begin{matrix} 1 & 1 & 1+\lambda & \lambda\\ 1 & 1+\lambda& 1 & 3\\ 1+\lambda & 1 & 1 & 0 \end{matrix} \right)\\ \to \left( \begin{matrix} 1 & 1 & 1+\lambda & \lambda\\ 0 & \lambda& -\lambda & 3-\lambda\\ 0 & -\lambda & -2\lambda-\lambda^2 & -\lambda-\lambda^2 \end{matrix} \right)\to \left( \begin{matrix} 1 & 1 & 1+\lambda & \lambda\\ 0 & \lambda& -\lambda & 3-\lambda\\ 0 & 0 & -3\lambda-\lambda^2 & 3-2\lambda-\lambda^2 \end{matrix} \right)\\ \to \left( \begin{matrix} 1 & 1 & 1+\lambda & \lambda\\ 0 & \lambda& -\lambda & 3-\lambda\\ 0 & 0 & -\lambda(3+\lambda) & (-\lambda+1)(\lambda+3) \end{matrix} \right) 1+λ1111+λ1111+λ03λ 111+λ11+λ11+λ11λ30 1001λλ1+λλ2λλ2λ3λλλ2 1001λ01+λλ3λλ2λ3λ32λλ2 1001λ01+λλλ(3+λ)λ3λ(λ+1)(λ+3)

(1) λ ≠ 0 \lambda\neq 0 λ=0,且 λ ≠ − 3 \lambda\neq -3 λ=3有唯一解;
(2) λ = 0 \lambda=0 λ=0无解;
(3) λ = − 3 \lambda=-3 λ=3有无穷多解。
( 1 1 − 2 − 3 0 − 3 3 6 0 0 0 0 ) → ( 1 1 − 2 − 3 0 1 − 1 − 2 0 0 0 0 ) → ( 1 0 − 1 − 1 0 1 − 1 − 2 0 0 0 0 ) ⇒ ( x 1 x 2 x 3 ) = ( − 1 − 2 0 ) + c ( 1 1 1 ) ( c 为 ∀ 常数 ) \left( \begin{matrix} 1 & 1 & -2 & -3\\ 0 & -3& 3 & 6\\ 0 & 0 & 0 & 0 \end{matrix} \right)\to \left( \begin{matrix} 1 & 1 & -2 & -3\\ 0 & 1& -1 & -2\\ 0 & 0 & 0 & 0 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 & -1 & -1\\ 0 & 1& -1 & -2\\ 0 & 0 & 0 & 0 \end{matrix} \right)\\ \Rightarrow \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)=\left( \begin{matrix} -1\\ -2\\ 0 \end{matrix} \right)+c\left( \begin{matrix} 1\\ 1\\ 1 \end{matrix} \right)(c\text{为}\forall \text{常数}) 100130230360 100110210320 100010110120 x1x2x3 = 120 +c 111 (c常数)

3、求解方程组:
{ x 1 − x 2 − x 3 + x 4 = 0 x 1 − x 2 + x 3 − 3 x 4 = 1 x 1 − x 2 − 2 x 3 + 3 x 4 = − 1 2 \begin{cases} x_1-x_2-x_3+x_4=0\\ x_1-x_2+x_3-3x_4=1\\ x_1-x_2-2x_3+3x_4=-\frac{1}{2} \end{cases} x1x2x3+x4=0x1x2+x33x4=1x1x22x3+3x4=21

解:
( 1 − 1 − 1 1 0 1 − 1 1 − 3 1 1 − 1 − 2 3 − 1 2 ) → ( 1 − 1 − 1 1 0 0 0 2 − 4 1 0 0 − 1 2 − 1 2 ) → ( 1 − 1 − 1 1 0 0 0 1 − 2 1 2 0 0 0 0 0 ) → ( 1 − 1 0 − 1 1 2 0 0 1 − 2 1 2 0 0 0 0 0 ) ⇒ ξ 1 = ( 1 1 0 0 ) , ξ 2 = ( 1 0 2 1 ) ⇒ ( x 1 x 2 x 3 x 4 ) = c 1 ( 1 1 0 0 ) + c 2 ( 1 0 2 1 ) + ( 1 2 0 1 2 0 ) ( c 1 , c 2 为 ∀ 常数 ) \left( \begin{matrix} 1 & -1 & -1 & 1 & 0\\ 1 & -1& 1 & -3 & 1\\ 1 & -1 & -2 & 3 & -\frac{1}{2} \end{matrix} \right)\to \left( \begin{matrix} 1 & -1 & -1 & 1 & 0\\ 0 & 0& 2 & -4 & 1\\ 0 & 0 & -1 & 2 & -\frac{1}{2} \end{matrix} \right)\to \left( \begin{matrix} 1 & -1 & -1 & 1 & 0\\ 0 & 0& 1 & -2 & \frac{1}{2}\\ 0 & 0 & 0 & 0 & 0 \end{matrix} \right)\\ \to \left( \begin{matrix} 1 & -1 & 0 & -1 & \frac{1}{2}\\ 0 & 0& 1 & -2 & \frac{1}{2}\\ 0 & 0 & 0 & 0 & 0 \end{matrix} \right)\Rightarrow \xi_1=\left( \begin{matrix} 1\\ 1\\ 0\\ 0 \end{matrix} \right),\xi_2=\left( \begin{matrix} 1\\ 0\\ 2\\ 1 \end{matrix} \right)\\ \Rightarrow \left( \begin{matrix} x_1\\ x_2\\ x_3\\ x_4 \end{matrix} \right)=c_1\left( \begin{matrix} 1\\ 1\\ 0\\ 0 \end{matrix} \right)+c_2\left( \begin{matrix} 1\\ 0\\ 2\\ 1 \end{matrix} \right)+\left( \begin{matrix} \frac{1}{2}\\ 0\\ \frac{1}{2}\\ 0 \end{matrix} \right)(c_1,c_2\text{为}\forall \text{常数}) 1111111121330121 1001001211420121 1001001101200210 10010001012021210 ξ1= 1100 ,ξ2= 1021 x1x2x3x4 =c1 1100 +c2 1021 + 210210 (c1,c2常数)

齐次线性方程组

A x = 0 Ax=0 Ax=0有非0解的充要条件:
R ( A ) < n ∣ A ∣ = 0 R(A)<n\\ |A|=0 R(A)<nA=0

基础解系

齐次线性方程组的解集的极大无关组称为其基础解系

习题

1、 { x 1 + x 2 − x 3 − x 4 = 0 2 x 1 − 5 x 2 + 3 x 3 + 2 x 4 = 0 7 x 1 − 7 x 2 + 3 x 3 + x 4 = 0 \begin{cases} x_1+x_2-x_3-x_4=0\\ 2x_1-5x_2+3x_3+2x_4=0\\ 7x_1-7x_2+3x_3+x_4=0 \end{cases} x1+x2x3x4=02x15x2+3x3+2x4=07x17x2+3x3+x4=0求其基础解系与通解。

解:
[ 1 1 − 1 − 1 2 − 5 3 2 7 − 7 3 1 ] → [ 1 1 − 1 − 1 0 − 7 5 4 0 − 14 10 8 ] → [ 1 1 − 1 − 1 0 1 − 5 7 − 4 7 0 0 0 0 ] → [ 1 0 − 2 7 − 3 7 0 1 − 5 7 − 4 7 0 0 0 0 ] \left[ \begin{matrix} 1 & 1 & -1 & -1\\ 2 & -5 & 3 & 2\\ 7 & -7 & 3 & 1 \end{matrix} \right]\to \left[ \begin{matrix} 1 & 1 & -1 & -1\\ 0 & -7 & 5 & 4\\ 0 & -14 & 10 & 8 \end{matrix} \right]\\ \to \left[ \begin{matrix} 1 & 1 & -1 & -1\\ 0 & 1 & -\frac{5}{7} & -\frac{4}{7}\\ 0 & 0 & 0 & 0 \end{matrix} \right]\to \left[ \begin{matrix} 1 & 0 & -\frac{2}{7} & -\frac{3}{7}\\ 0 & 1 & -\frac{5}{7} & -\frac{4}{7}\\ 0 & 0 & 0 & 0 \end{matrix} \right] 127157133121 10017141510148 10011017501740 1000107275073740

⇒ \Rightarrow 基础解系 ξ 1 = ( 2 7 5 7 1 0 ) , ξ 2 = ( 3 7 4 7 0 1 ) \xi_1= \left( \begin{matrix} \frac{2}{7}\\ \frac{5}{7}\\ 1\\ 0 \end{matrix} \right),\xi_2=\left( \begin{matrix} \frac{3}{7}\\ \frac{4}{7}\\ 0\\ 1 \end{matrix} \right) ξ1= 727510 ,ξ2= 737401

通解: ( x 1 x 2 x 3 x 4 ) = c 1 ( 2 7 5 7 1 0 ) + c 2 ( 3 7 4 7 0 1 ) , \left( \begin{matrix} x_1\\ x_2\\ x_3\\ x_4 \end{matrix} \right)=c_1\left( \begin{matrix} \frac{2}{7}\\ \frac{5}{7}\\ 1\\ 0 \end{matrix} \right)+c_2\left( \begin{matrix} \frac{3}{7}\\ \frac{4}{7}\\ 0\\ 1 \end{matrix} \right), x1x2x3x4 =c1 727510 +c2 737401 ,( c 1 , c 2 c_1,c_2 c1,c2 ∀ \forall 常数)

2、设3阶矩阵 A = ( 1 2 − 2 4 t 3 3 − 1 1 ) A=\left( \begin{matrix} 1&2&-2\\ 4&t&3\\ 3&-1&1 \end{matrix} \right) A= 1432t1231 B B B为3阶非0矩阵,且 A B = 0 AB=0 AB=0,求 t t t的值。

解: R ( A ) + R ( B ) ⩽ 3 ⇒ ∣ A ∣ = 0 R(A)+R(B)\leqslant 3\Rightarrow |A|=0 R(A)+R(B)3A=0
∣ 1 2 − 2 4 t 3 3 − 1 1 ∣ = ∣ 1 2 − 2 0 t − 8 11 0 − 7 7 ∣ = ( t − 8 ) 7 + 77 = 0 ⇒ t = − 3 \left| \begin{matrix} 1&2&-2\\ 4&t&3\\ 3&-1&1 \end{matrix} \right|=\left| \begin{matrix} 1&2&-2\\ 0&t-8&11\\ 0&-7&7 \end{matrix} \right|=(t-8)7+77=0\Rightarrow t=-3 1432t1231 = 1002t872117 =(t8)7+77=0t=3

3、设矩阵 A = α α T + β β T , α , β A=\alpha\alpha^T+\beta\beta^T,\alpha,\beta A=ααT+ββT,α,β n n n维列向量,证明:
(1) R ( A ) ⩽ 2 R(A)\leqslant 2 R(A)2
(2)当 α , β \alpha,\beta α,β线性相关时, R ( A ) ⩽ 1 R(A)\leqslant 1 R(A)1

证:(1) R ( A ) = R ( α α T + β β T ) ⩽ R ( α α T ) + R ( β β T ) ⩽ R ( α ) + R ( β ) = 1 + 1 = 2 R(A)=R(\alpha\alpha^T+\beta\beta^T)\leqslant R(\alpha\alpha^T)+R(\beta\beta^T)\leqslant R(\alpha)+R(\beta)=1+1=2 R(A)=R(ααT+ββT)R(ααT)+R(ββT)R(α)+R(β)=1+1=2

(2)当 α , β \alpha,\beta α,β线性相关时,
1)若 α , β \alpha,\beta α,β均为0向量,
⇒ A = 0 ⇒ R ( A ) = 0 \Rightarrow A=0\Rightarrow R(A)=0 A=0R(A)=0

2)若 α , β \alpha,\beta α,β不全为0向量,设 α ≠ 0 ⇒ β = k α \alpha\neq 0\Rightarrow \beta=k\alpha α=0β=kα
⇒ R ( A ) = R ( ( 1 + k 2 ) α α T ) = R ( α α T ) ⩽ R ( α ) = 1 \Rightarrow R(A)=R((1+k^2)\alpha\alpha^T)=R(\alpha\alpha^T)\leqslant R(\alpha)=1 R(A)=R((1+k2)ααT)=R(ααT)R(α)=1

4、设向量组 A : α 1 , α 2 A:\alpha_1,\alpha_2 A:α1,α2 B : α 1 , α 2 , α 3 B:\alpha_1,\alpha_2,\alpha_3 B:α1,α2,α3 C : α 1 , α 2 , α 4 C:\alpha_1,\alpha_2,\alpha_4 C:α1,α2,α4的秩为 R A = R B = 2 , R C = 3 R_A=R_B=2,R_C=3 RA=RB=2,RC=3,求 D : α 1 , α 2 , 2 α 3 − 3 α 4 D:\alpha_1,\alpha_2,2\alpha_3-3\alpha_4 D:α1,α2,2α33α4的秩。

解: R A = R B = 2 R_A=R_B=2 RA=RB=2
⇒ α 1 , α 2 线性无关 ⇒ α 1 , α 2 , α 3 线性相关 ⇒ α 3 可由 α 1 , α 2 唯一线性表示 设 α 3 = k 1 α 1 + k 2 α 2 ( α 1 , α 2 , 2 α 3 − 3 α 4 ) = ( α 1 , α 2 , 2 k 1 α 1 + 2 k 2 α 2 − 3 α 4 ) = ( α 1 , α 2 , α 4 ) ( 1 0 2 k 1 0 1 2 k 2 0 0 − 3 ) = ( α 1 , α 2 , α 4 ) K R C = 3 ⇒ α 1 , α 2 , α 4 线性无关 , ∣ K ∣ = − 3 ≠ 0 ⇒ K 可逆 ⇒ R D = R C = 3 \Rightarrow \alpha_1,\alpha_2\text{线性无关}\\ \Rightarrow \alpha_1,\alpha_2,\alpha_3\text{线性相关}\\ \Rightarrow \alpha_3\text{可由}\alpha_1,\alpha_2\text{唯一线性表示}\\ \text{设}\alpha_3=k_1\alpha_1+k_2\alpha_2\\ (\alpha_1,\alpha_2,2\alpha_3-3\alpha_4)=(\alpha_1,\alpha_2,2k_1\alpha_1+2k_2\alpha_2-3\alpha_4)\\=(\alpha_1,\alpha_2,\alpha_4)\left( \begin{matrix} 1&0&2k_1\\ 0&1&2k_2\\ 0&0&-3 \end{matrix} \right)=(\alpha_1,\alpha_2,\alpha_4)K\\ R_C=3\Rightarrow \alpha_1,\alpha_2,\alpha_4\text{线性无关},|K|=-3\neq 0\Rightarrow K\text{可逆}\\ \Rightarrow R_D=R_C=3 α1,α2线性无关α1,α2,α3线性相关α3可由α1α2唯一线性表示α3=k1α1+k2α2(α1,α2,2α33α4)=(α1,α2,2k1α1+2k2α23α4)=(α1,α2,α4) 1000102k12k23 =(α1,α2,α4)KRC=3α1,α2,α4线性无关,K=3=0K可逆RD=RC=3

5、I. { x 1 + x 2 = 0 x 2 − x 4 = 0 \begin{cases} x_1+x_2=0\\ x_2-x_4=0 \end{cases} {x1+x2=0x2x4=0,II. { x 1 − x 2 + x 3 = 0 x 2 − x 3 + x 4 = 0 \begin{cases} x_1-x_2+x_3=0\\ x_2-x_3+x_4=0 \end{cases} {x1x2+x3=0x2x3+x4=0
求I与II的公共解。

解: { x 1 + x 2 = 0 x 2 − x 4 = 0 x 1 − x 2 + x 3 = 0 x 2 − x 3 + x 4 = 0 \begin{cases} x_1+x_2=0\\ x_2-x_4=0\\ x_1-x_2+x_3=0\\ x_2-x_3+x_4=0 \end{cases} x1+x2=0x2x4=0x1x2+x3=0x2x3+x4=0
( 1 1 0 0 0 1 0 − 1 1 − 1 1 0 0 1 − 1 1 ) → ( 1 0 0 1 0 1 0 − 1 0 0 1 − 2 0 0 0 0 ) ⇒ ( x 1 x 2 x 3 x 4 ) = k ( − 1 1 2 1 ) , k ∈ R \left( \begin{matrix} 1&1&0&0\\ 0&1&0&-1\\ 1&-1&1&0\\ 0&1&-1&1 \end{matrix} \right)\to \left( \begin{matrix} 1&0&0&1\\ 0&1&0&-1\\ 0&0&1&-2\\ 0&0&0&0 \end{matrix} \right)\Rightarrow \left( \begin{matrix} x_1\\ x_2\\ x_3\\ x_4 \end{matrix} \right)=k\left( \begin{matrix} -1\\ 1\\ 2\\ 1 \end{matrix} \right),k\in R 1010111100110101 1000010000101120 x1x2x3x4 =k 1121 ,kR

性质

1) A B = C AB=C AB=C
⇒ R ( C ) ⩽ m i n { R ( A ) , R ( B ) } R ( C ) ⩽ R ( A ) R ( C ) ⩽ R ( B ) \Rightarrow R(C)\leqslant min\{R(A),R(B)\}\\ R(C)\leqslant R(A)\\ R(C)\leqslant R(B) R(C)min{R(A),R(B)}R(C)R(A)R(C)R(B)

2) A x = 0 Ax=0 Ax=0 B x = 0 Bx=0 Bx=0同解
⇒ R ( A ) = R ( B ) \Rightarrow R(A)=R(B)\\ R(A)=R(B)

3) R ( A T A ) = R ( A ) R(A^TA)=R(A) R(ATA)=R(A)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值