简述线性方程组


本文希望以尽可能直观形象的视角简单阐述一下究竟什么是线性方程组,以及与之相关的一些概念和性质,并举例说明一下如何求解一个线性方程组。

一、向量组的秩

只有先说清楚什么是秩,及其相关概念,才好解释线性方程组究竟要表达的是什么。

(一)基本定义

  1. 线性表示。设有 m m m个向量分别是 a 1 , a 2 , ⋯ a m \boldsymbol a_1, \boldsymbol a_2, \cdots \boldsymbol a_m a1,a2,am,若这 m m m个向量的一种线性组合等于另一个向量 b \boldsymbol b b,即存在一组系数 k k k,使得 k 1 a 1 + k 2 a 2 + ⋯ + k m a m = b k_1\boldsymbol a_1+k_2 \boldsymbol a_2+ \cdots + k_m\boldsymbol a_m=\boldsymbol b k1a1+k2a2++kmam=b成立,则称向量 b \boldsymbol b b可由向量组 a 1 , a 2 , ⋯ a m \boldsymbol a_1, \boldsymbol a_2, \cdots \boldsymbol a_m a1,a2,am线性表示。
  2. 线性相关。设有 m m m个向量分别是 a 1 , a 2 , ⋯ a m \boldsymbol a_1, \boldsymbol a_2, \cdots \boldsymbol a_m a1,a2,am,若其中每个向量都可由其他向量线性表示,即存在一组不全为0的系数 k k k,使得 k 1 a 1 + k 2 a 2 + ⋯ + k m a m = 0 k_1\boldsymbol a_1+k_2 \boldsymbol a_2+ \cdots + k_m\boldsymbol a_m=0 k1a1+k2a2++kmam=0成立,则称这 m m m个向量线性相关。反之,若该向量组中每个向量都无法由其他向量线性表示,则称这 m m m个向量线性无关。
  3. 极大无关组。在一个向量组中,取出 r r r个向量,如果这 r r r个向量线性无关,而该向量组中其余向量又都可由这 r r r个向量线性表示,则称这 r r r个向量为向量组的一个极大线性无关组,简称极大无关组。
  4. 。在一个向量组 A \boldsymbol A A中,任意一个极大无关组所含向量的个数,称为该向量组的秩,记为 R ( A ) R(\boldsymbol A) R(A)
  5. 。当将上述向量组扩展到整个向量空间时,此时的极大无关组称为该向量空间的一个基(也可理解成坐标系)。
  6. 正交基。如果两向量之间非但线性无关,而且内积还为0(即彼此在对方所在直线上都没有投影),则称这两个向量正交(即垂直)。一组基向量如果彼此都互相正交,则称这个基为正交基。
  7. 标准正交基。如果一个正交基中的所有基向量的模长都为1,则称这个正交基为标准正交基。

一个向量组的秩就是由该向量组所张成空间的维度,也就是该空间基的向量个数。如在3维空间中的一堆同在一个平面上的向量,它们的秩却是2。如下图所示:在这里插入图片描述

(二)秩的性质

  1. n n n维向量(即向量中的元素个数是 n n n)构成的向量组的秩一定小于等于 n n n
    因为无论多少 n n n维向量也无法线性表示一个维度大于 n n n的向量。
  2. 一个线性相关向量组外的任一同维向量 B \boldsymbol B B,被此线性相关向量组表示的方式都有无穷多。
    因为一个向量组如果线性相关,说明其中至少可以选出两个向量形成一个任意非0线性组合(即一个新向量)来替代这两个向量,得到的新向量组依然可以线性表示 B \boldsymbol B B
  3. 极大无关组外的任一同维向量被此极大无关组线性表示的方式是唯一的。
  4. 矩阵的行向量组与其列向量组的秩相同。
  5. 矩阵做初等行/列变换后秩不变。
  6. 一个 n n n阶方阵可逆的充要条件是该方阵满秩,即秩为 n n n
    因为一个 n n n阶方阵可以看做是对 n n n维直角坐标系做线性变换(即变换后的空间网格线仍保持平行且等距)后的基,如果这个基还能再线性变换回去(即存在逆阵),则说明新基张成空间并没有降维,还是 n n n维空间,即新基的秩是 n n n。这就好比可以通过线性变换把一个平面变成一条直线,但无法通过线性变换把一条直线变成一个平面。

(三)秩的求法

基于上述性质,求一个向量组的秩,只需将由此向量组构成的矩阵做初等行变换,化成一个梯形阵,其非0行个数就是该矩阵的秩,也是该向量组的秩。

二、线性方程组

线性方程组的本质是一组向量对另一个向量的线性表示。如果把这一组向量视为一个基,那么求解一个线性方程组,就是找出被表示向量在这组基上的坐标。

(一)基本概念

n n n元线性方程组的一般形式为 A X = B \boldsymbol A \boldsymbol X = \boldsymbol B AX=B。其中,
A = [ a 1 a 2 ⋯ a n ] = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] , X = [ x 1 x 2 ⋮ x n ] , B = [ b 1 b 2 ⋮ b n ] \boldsymbol A = \left [\begin{matrix} \boldsymbol a_1 & \boldsymbol a_2 & \cdots & \boldsymbol a_n \end{matrix} \right ] = \left [\begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots &\vdots &\ddots &\vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{matrix} \right ],\boldsymbol X = \left [\begin{matrix} x_1 \\ x_2 \\ \vdots\\ x_n \end{matrix} \right ],\boldsymbol B = \left [\begin{matrix} b_1 \\ b_2 \\ \vdots\\ b_n \end{matrix} \right ] A=[a1a2an]= a11a21an1a12a22an2a1na2nann X= x1x2xn B= b1b2bn

  1. A \boldsymbol A A称为该方程组的系数矩阵。
  2. A ~ = [ A B ] \widetilde {\boldsymbol A} = \left [\begin{matrix} \boldsymbol A & \boldsymbol B \end{matrix} \right ] A =[AB]称为该方程组的增广矩阵。
  3. B = 0 \boldsymbol B=0 B=0,该方程组称为齐次线性方程组;否则称为非齐次线性方程组。

(二)解的数量

  1. R ( A ) < R ( A ~ ) R(\boldsymbol A)< R(\widetilde {\boldsymbol A}) R(A)<R(A )时,说明 B \boldsymbol B B向量超出了系数向量组 A \boldsymbol A A所在空间,则无法由系数向量组 A \boldsymbol A A线性表示,即方程组无解。
  2. R ( A ) = R ( A ~ ) < n R(\boldsymbol A)= R(\widetilde {\boldsymbol A})<n R(A)=R(A )<n时,一方面说明 B \boldsymbol B B向量与系数向量组 A \boldsymbol A A同处于 n n n维空间中由 A \boldsymbol A A张成的子空间,另一方面说明系数向量组本身线性相关,因此对向量 B \boldsymbol B B的线性表示方式必然有无穷多种,即方程组有无穷解。
  3. R ( A ) = R ( A ~ ) = n R(\boldsymbol A)= R(\widetilde {\boldsymbol A})=n R(A)=R(A )=n时,说明 B \boldsymbol B B向量与系数向量组 A \boldsymbol A A同处于 n n n维空间中,且系数向量组本身线性无关,因此对向量 B \boldsymbol B B的线性表示方式有且只有一种,即方程组有唯一解。

三、齐次线性方程组求解

所谓齐次线性方程组,其实是用系数向量组来线性表示一个0向量。如果要有非零解,说明系数向量组 A \boldsymbol A A必然是线性相关的,即 A \boldsymbol A A不是极大无关组,即 R ( A ) < n R(\boldsymbol A)<n R(A)<n,此情况下向量组 A \boldsymbol A A对0向量的表示必然有无穷多种,即方程组有无穷多解。

但也不是任意 n n n维向量都是该方程组的解(除非系数向量组的秩是0),只有在系数向量组 A \boldsymbol A A张成的空间里投影是0的向量才是该方程组的解。该方程组的这些无穷多解在 n n n维空间中构成了一个子空间 S \boldsymbol S S,称为该方程组的解空间。我们所要做的就是把这个解空间表示出来,而要表示一个线性空间,只需要找到此空间的一个基即可,该空间中的任意向量都可以用这组基向量来线性表示,这个基就称为该线齐次方程组的基础解系。可以想象,系数向量组 A \boldsymbol A A张成的空间每增加1维,则解空间 S \boldsymbol S S的维度就降一维,比如三维空间中,在一条线上投影为0的所有向量构成了一个面;而在一个面上投影为0的所有向量构成了一条线,说明 R ( S ) = n − R ( A ) R(\boldsymbol S)= n - R(\boldsymbol A) R(S)=nR(A)

下面举例说明如何求解齐次线性方程组。求解齐次线性方程组如下:
{ x 1 + x 2 + x 3 − 2 x 5 = 0 2 x 1 + 2 x 2 + x 3 + 2 x 4 − 3 x 5 = 0 x 1 + x 2 + 3 x 3 − 4 x 4 − 4 x 5 = 0 \begin{cases} \begin{aligned} x_1 + x_2 + x_3 -2x_5 &= 0 \\ 2x_1 + 2x_2 + x_3 + 2x_4 - 3x_5 &= 0 \\ x_1 + x_2 + 3x_3 - 4x_4 - 4x_5 &= 0 \\ \end{aligned} \end{cases} x1+x2+x32x52x1+2x2+x3+2x43x5x1+x2+3x34x44x5=0=0=0通过初等行变换将 A \boldsymbol A A矩阵化为最简形(即每行第一个非0元素都1,下一行首个1的位置总比上一行靠后):
A = [ 1 1 1 0 − 2 2 2 1 2 − 3 1 1 3 − 4 − 4 ] → r [ 1 1 0 2 − 1 0 0 1 − 2 − 1 0 0 0 0 0 ] \boldsymbol A = \left [\begin{matrix} 1 & 1 &1 & 0 & -2 \\ 2 & 2 &1 & 2 & -3 \\ 1 & 1 & 3 & -4 & -4 \\ \end{matrix} \right ] \stackrel{r} \rightarrow \left [\begin{matrix} 1 & 1 &0 & 2 & -1 \\ 0 & 0 &1 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ \end{matrix} \right ] A= 121121113024234 r 100100010220110 于是可得:
{ x 1 = − x 2 − 2 x 4 + x 5 x 3 = 2 x 4 + x 5 \begin{cases} \begin{aligned} x_1 &= -x_2 - 2x_4 + x_5 \\ x_3 &= 2x_4 + x_5 \\ \end{aligned} \end{cases} {x1x3=x22x4+x5=2x4+x5可见 x 2 x_2 x2 x 4 x_4 x4 x 5 x_5 x5是自由未知数,即可取任意值,因此取此三维空间的标准正交基作为这三个未知数的三个解:
[ x 2 x 4 x 5 ] = [ 1 0 0 ] , [ 0 1 0 ] , [ 0 0 1 ] \left [\begin{matrix} x_2 \\ x_4 \\ x_5 \\ \end{matrix} \right ] = \left [\begin{matrix} 1 \\ 0 \\ 0 \\ \end{matrix} \right ], \left [\begin{matrix} 0 \\ 1 \\ 0 \\ \end{matrix} \right ], \left [\begin{matrix} 0 \\ 0 \\ 1 \\ \end{matrix} \right ] x2x4x5 = 100 010 001 代入上式可得:
[ x 1 x 3 ] = [ − 1 0 ] , [ − 2 2 ] , [ 1 1 ] \left [\begin{matrix} x_1 \\ x_3 \\ \end{matrix} \right ] = \left [\begin{matrix} -1 \\ 0 \\ \end{matrix} \right ], \left [\begin{matrix} -2 \\ 2 \\ \end{matrix} \right ], \left [\begin{matrix} 1 \\ 1 \\ \end{matrix} \right ] [x1x3]=[10][22][11]从而得基础解系为:
ξ 1 = [ − 1 1 0 0 0 ] , ξ 2 = [ − 2 0 2 1 0 ] , ξ 3 = [ 1 0 1 0 1 ] \boldsymbol \xi_1 = \left [\begin{matrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ \end{matrix} \right ] , \boldsymbol \xi_2 = \left [\begin{matrix} -2 \\ 0 \\ 2 \\ 1 \\ 0 \\ \end{matrix} \right ] , \boldsymbol \xi_3 = \left [\begin{matrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ \end{matrix} \right ] ξ1= 11000 ξ2= 20210 ξ3= 10101 因此原齐次线性方程组的通解为: x = k 1 ξ 1 + k 2 ξ 2 + k 3 ξ 3 \boldsymbol x = k_1 \boldsymbol \xi_1 + k_2 \boldsymbol \xi_2 + k_3 \boldsymbol \xi_3 x=k1ξ1+k2ξ2+k3ξ3,其中 k k k为任意实数。

四、非齐次线性方程组求解

(一)有无穷解时

其通解为导出组(即令 B = 0 \boldsymbol B=0 B=0后得到的齐次方程组)的通解加上该非齐次方程组的任一特解。

下面举例说明如何求解非齐次线性方程组通解。求解非齐次线性方程组如下:
{ x 1 − x 2 + 2 x 3 − 2 x 4 = 1 x 2 + x 3 + 2 x 4 = − 1 2 x 1 − x 2 + 5 x 3 − 2 x 4 = 1 x 1 + x 2 + 4 x 3 + 2 x 4 = − 1 \begin{cases} \begin{aligned} x_1 - x_2 + 2x_3 -2x_4 & = 1 \\ x_2 + x_3 + 2x_4 &= -1 \\ 2x_1 - x_2 + 5x_3 - 2x_4 &= 1 \\ x_1 + x_2 + 4x_3 + 2x_4 &= -1 \end{aligned} \end{cases} x1x2+2x32x4x2+x3+2x42x1x2+5x32x4x1+x2+4x3+2x4=1=1=1=1通过初等行变换将增广阵化为最简形:
A ~ = [ 1 − 1 2 − 2 1 0 1 1 − 2 − 1 2 − 1 5 − 2 1 1 1 4 2 − 1 ] → r [ 1 0 3 0 0 0 1 1 2 − 1 0 0 0 0 0 0 0 0 0 0 ] \widetilde {\boldsymbol A} = \left [\begin{matrix} 1 & -1 &2 & -2 & 1 \\ 0 & 1 &1 & -2 & -1 \\ 2 & -1 & 5 & -2 & 1 \\ 1 & 1 & 4 & 2 & -1 \end{matrix} \right ] \stackrel{r} \rightarrow \left [\begin{matrix} 1 & 0 & 3 & 0 & 0 \\ 0 & 1 &1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{matrix} \right ] A = 10211111215422221111 r 10000100310002000100 可见 R ( A ) = R ( A ~ ) = 2 < n = 4 R(\boldsymbol A)= R(\widetilde {\boldsymbol A}) = 2 < n =4 R(A)=R(A )=2<n=4,说明该方程组有无穷多解。由上式可得:
{ x 1 = − 3 x 3 x 2 = − x 3 − 2 x 4 − 1 \begin{cases} \begin{aligned} x_1 &= -3x_3 \\ x_2 &= -x_3 - 2x_4 -1 \\ \end{aligned} \end{cases} {x1x2=3x3=x32x41可令 x 3 x_3 x3 x 4 x_4 x4都为0,可得:
{ x 1 = 0 x 2 = − 1 \begin{cases} \begin{aligned} x_1 &= 0 \\ x_2 &= -1 \\ \end{aligned} \end{cases} {x1x2=0=1即得到方程组的一个特解:
η = [ 0 − 1 0 0 ] \boldsymbol \eta = \left [\begin{matrix} 0 \\ -1 \\ 0 \\ 0 \end{matrix} \right ] η= 0100 再按齐次线性方程组解法求得导出组的基础解系为:
ξ 1 = [ − 3 − 1 1 0 ] , ξ 2 = [ 0 − 2 0 1 ] \boldsymbol \xi_1 = \left [\begin{matrix} -3 \\ -1 \\ 1 \\ 0 \\ \end{matrix} \right ] , \boldsymbol \xi_2 = \left [\begin{matrix} 0 \\ -2 \\ 0 \\ 1 \\ \end{matrix} \right ] ξ1= 3110 ξ2= 0201 因此原非齐次线性方程组的通解为: x = k 1 ξ 1 + k 2 ξ 2 + η \boldsymbol x = k_1 \boldsymbol \xi_1 + k_2 \boldsymbol \xi_2 + \boldsymbol \eta x=k1ξ1+k2ξ2+η,其中 k k k为任意实数。

(二)有唯一解时

除通过克拉默法则(详解《简述行列式》)求解外,由于此时系数矩阵 A \boldsymbol A A满秩,即说明存在其逆矩阵。因此由 A X = B \boldsymbol A \boldsymbol X = \boldsymbol B AX=B可知 X = A − 1 B \boldsymbol X = \boldsymbol A^{-1} \boldsymbol B X=A1B。而如果通过一系列初等行变换可化 A \boldsymbol A A为单位阵 I \boldsymbol I I,则这一系列初等行变换就相当于对 A \boldsymbol A A左乘其逆阵(详见《简述矩阵运算》)。同理,将这一些列初等行变换同样作用于 B \boldsymbol B B,则也相当于对 B \boldsymbol B B左乘 A − 1 \boldsymbol A^{-1} A1。因此对增广阵做一系列初等行变换化 A \boldsymbol A A I \boldsymbol I I后,此时 B \boldsymbol B B的位置就变成了方程的解向量。

  • 10
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 牛顿迭代法是一种求解非线性方程组的方法,它可以用来求解一般的非线性方程组,也可以用来求解特定的非线性方程组。 假设我们要求解的非线性方程组为: f1(x1, x2, …, xn) = 0 f2(x1, x2, …, xn) = 0 … fn(x1, x2, …, xn) = 0 其中,x1, x2, …, xn 是未知量,f1, f2, …, fn 是已知函数。 牛顿迭代法的基本思想是,对于某个初始点 (x1^0, x2^0, …, xn^0),我们通过一系列迭代来逐步逼近方程组的解。每一次迭代都会计算出一个新的近似解 (x1^k, x2^k, …, xn^k),以此类推,直到达到所需的精度为止。 具体的迭代公式为: [x^(k+1)] = [x^(k)] - [J_f(x^(k))]^-1 · [f(x^(k))] 其中,[x^(k)] 是第 k 次迭代所得的近似解,[J_f(x^(k))] 是方程组在 [x^(k)] 处的雅可比矩阵,[f(x^(k))] 是方程组在 [x^(k)] 处的函数值。 需要注意的是,牛顿迭代法的收敛性和初始点的选取有关,如果初始点选取不当,可能会导致迭代不收敛或者收敛速度非常慢。因此,在实际应用中,通常需要对初始点进行一定的调整和优化。 ### 回答2: 牛顿迭代法是一种常用的求解非线性方程组的数值方法。其基本思想是利用泰勒展开式将非线性方程组转化为线性方程组,从而通过迭代逼近方程组的解。 具体的迭代过程如下: 1. 选取一个初始解向量作为迭代的起点。 2. 对于每一次迭代,计算当前解向量的函数值和雅可比矩阵(即方程组的导数矩阵)的值。 3. 利用当前解向量和雅可比矩阵的值,通过求解线性方程组来更新解向量。 4. 重复2和3步骤,直到满足一定的终止条件(如迭代次数达到设定的最大值或解的相对误差小于给定精度)。 5. 最终得到一个近似的解向量,它满足非线性方程组。 牛顿迭代法的收敛性与初始解的选取有关,如果初始解离真实解较远,可能会出现迭代发散的情况。因此,初始解的选取需要合理。 牛顿迭代法在求解非线性方程组时具有较快的收敛速度,但也存在一定的局限性。它对于求解大规模方程组来说,需要计算和存储大量的雅可比矩阵,并且在每一次迭代中都需要求解线性方程组,计算量较大。此外,对于某些特殊的非线性方程组,牛顿迭代法可能会出现收敛失效的情况。 综上所述,牛顿迭代法是求解非线性方程组的一种有效方法,但在使用时需要注意初始解的选取和收敛性的保证。 ### 回答3: 牛顿迭代法是一种用于求解非线性方程组的数值方法。它基于牛顿法,利用函数的一阶导数和二阶导数来逼近方程组的解。 假设我们要求解一个非线性方程组,其中包含n个未知数和n个方程: F(x) = 0,其中x = (x1, x2, ..., xn)是未知数的向量,F(x) = (f1(x), f2(x), ..., fn(x))是方程组的向量函数。 牛顿迭代法的基本思想是:从一个初始点x0开始,通过不断迭代来逼近方程组的解。 具体的迭代过程是: 1. 计算方程组的雅可比矩阵J(x) = (∂f/∂x),其中∂f/∂x是f对x的一阶偏导数矩阵。 2. 在当前点xk处,计算方程组的函数值F(xk)和雅可比矩阵J(xk)。 3. 解一个线性方程组 J(xk)(xk+1 - xk) = -F(xk),求得方向向量Δxk = (xk+1 - xk)。 4. 更新当前点:xk+1 = xk + Δxk。 5. 重复步骤2-4,直到满足收敛条件。 牛顿迭代法的迭代次数通常比较少,收敛速度较快。但它需要计算方程组的雅可比矩阵,如果雅可比矩阵的计算比较复杂,就会增加计算的复杂度。 需要注意的是,牛顿迭代法可能会遇到奇点、发散或振荡等问题。为了提高算法的稳定性,可以使用改进的牛顿法,如拟牛顿法。 总之,牛顿迭代法是一种有效的求解非线性方程组的数值方法,它通过迭代逼近解,可以在较短的时间内得到较精确的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XY_0209

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值