【向量的知识】

定义和运算

A = ( a 1 a 2 ⋮ a n ) , B = ( b 1 b 2 ⋮ b n ) A + B = ( a 1 + b 1 a 2 + b 2 ⋮ a n + b n ) , k A = ( k a 1 k a 2 ⋮ k a n ) A=\left( \begin{matrix} a_1\\ a_2\\ \vdots \\ a_n \end{matrix} \right),B=\left( \begin{matrix} b_1\\ b_2\\ \vdots \\ b_n \end{matrix} \right)\\ A+B=\left( \begin{matrix} a_1+b_1\\ a_2+b_2\\ \vdots \\ a_n+b_n \end{matrix} \right),kA=\left( \begin{matrix} ka_1\\ ka_2\\ \vdots \\ ka_n \end{matrix} \right) A= a1a2an ,B= b1b2bn A+B= a1+b1a2+b2an+bn ,kA= ka1ka2kan

内积

x = ( x 1 x 2 ⋮ x n ) , y = ( y 1 y 2 ⋮ y n ) x T y = [ x , y ] = x 1 y 1 + x 2 y 2 + ⋯ + x n y n x=\left( \begin{matrix} x_1\\ x_2\\ \vdots \\ x_n \end{matrix} \right),y=\left( \begin{matrix} y_1\\ y_2\\ \vdots \\ y_n \end{matrix} \right)\\ x^Ty=[x,y]=x_1y_1+x_2y_2+\cdots+x_ny_n x= x1x2xn ,y= y1y2yn xTy=[x,y]=x1y1+x2y2++xnyn

1) [ x , y ] = [ y , x ] [x,y]=[y,x] [x,y]=[y,x]

2) [ λ x , y ] = λ [ x , y ] [\lambda x,y]=\lambda[x,y] [λx,y]=λ[x,y]

3) [ x + y , z ] = [ x , z ] + [ y , z ] [x+y,z]=[x,z]+[y,z] [x+y,z]=[x,z]+[y,z]

4)当 x = 0 x=0 x=0时,
[ x , x ] = 0 [x,x]=0 [x,x]=0
x ≠ 0 x\neq 0 x=0时,
[ x , x ] > 0 [x,x]>0 [x,x]>0

范数

n n n维向量 x x x的长度(范数):
∣ ∣ x ∣ ∣ = [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 ||x||=\sqrt{[x,x]}=\sqrt{x_1^2+x_2^2+\cdots+x_n^2} ∣∣x∣∣=[x,x] =x12+x22++xn2

1) ∣ ∣ x ∣ ∣ ⩾ 0 ( x = 0 , ∣ ∣ x ∣ ∣ = 0 ) ||x||\geqslant 0(x=0,||x||=0) ∣∣x∣∣0(x=0,∣∣x∣∣=0)

2) ∣ ∣ λ x ∣ ∣ = ∣ λ ∣ ⋅ ∣ ∣ x ∣ ∣ ||\lambda x||=|\lambda|\cdot ||x|| ∣∣λx∣∣=λ∣∣x∣∣

长度为1的向量为单位向量

α ≠ 0 \alpha \neq 0 α=0,取 x = α ∣ ∣ α ∣ ∣ x=\frac{\alpha}{||\alpha||} x=∣∣α∣∣α向量 α \alpha α的单位化

正交

1)当 [ x , y ] = 0 [x,y]=0 [x,y]=0时——向量 x x x y y y正交

2)若 x = 0 x=0 x=0时, ⇒ x \Rightarrow x x与任意向量都正交。

3)若 n n n维向量 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr是一组两两正交的非0向量,
⇒ α 1 , α 2 , ⋯   , α r 线性无关 \Rightarrow \alpha_1,\alpha_2,\cdots,\alpha_r\text{线性无关} α1,α2,,αr线性无关

n n n维向量 e 1 , e 2 , ⋯   , e r e_1,e_2,\cdots,e_r e1,e2,,er R n R^n Rn的一个基,若 e 1 , e 2 , ⋯   , e r e_1,e_2,\cdots,e_r e1,e2,,er两两正交,且都是单位向量,则 e 1 , e 2 , ⋯   , e r e_1,e_2,\cdots,e_r e1,e2,,er R n R^n Rn一个标准正交基

施密特正交化

α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr标准正交化,
β 1 = α 1 β 2 = α 2 − [ β 1 , α 2 ] [ β 1 , β 1 ] ⋅ β 1 ⋮ β r = α r − [ β 1 , α r ] [ β 1 , β 1 ] ⋅ β 1 − [ β 2 , α r ] [ β 2 , β 2 ] ⋅ β 2 − ⋯ − [ β r − 1 , α r ] [ β r − 1 , β r − 1 ] ⋅ β r − 1 \beta_1=\alpha_1\\ \beta_2=\alpha_2-\frac{[\beta_1,\alpha_2]}{[\beta_1,\beta_1]}\cdot \beta_1\\ \vdots\\ \beta_r=\alpha_r-\frac{[\beta_1,\alpha_r]}{[\beta_1,\beta_1]}\cdot \beta_1-\frac{[\beta_2,\alpha_r]}{[\beta_2,\beta_2]}\cdot \beta_2-\cdots-\frac{[\beta_{r-1},\alpha_r]}{[\beta_{r-1},\beta_{r-1}]}\cdot \beta_{r-1} β1=α1β2=α2[β1,β1][β1,α2]β1βr=αr[β1,β1][β1,αr]β1[β2,β2][β2,αr]β2[βr1,βr1][βr1,αr]βr1

然后把它们单位化,即:
e 1 = β 1 ∣ ∣ β 1 ∣ ∣ , ⋯   , e r = β r ∣ ∣ β r ∣ ∣ e_1=\frac{\beta_1}{||\beta_1||},\cdots,e_r=\frac{\beta_r}{||\beta_r||} e1=∣∣β1∣∣β1,,er=∣∣βr∣∣βr
v v v一个标准正交基

线性组合和线性表示

给定训练组 A : α 1 , α 2 , ⋯   , α m A:\alpha_1,\alpha_2,\cdots,\alpha_m A:α1,α2,,αm,对 ∀ \forall 一组实数 k 1 , k 2 , ⋯   , k m k_1,k_2,\cdots,k_m k1,k2,,km表示 k 1 α 1 + k 2 α 2 + ⋯ + k m α m k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m k1α1+k2α2++kmαm向量组 A A A的一个线性组合

b = k 1 α 1 + k 2 α 2 + ⋯ + k m α m b=k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m b=k1α1+k2α2++kmαm则称 b b b可由向量组 A A A线性表示
⇔ 方程组 A x = b 有解 \Leftrightarrow \text{方程组}Ax=b\text{有解} 方程组Ax=b有解

1)向量 b b b可由向量组 A : α 1 , α 2 , ⋯   , α m A:\alpha_1,\alpha_2,\cdots,\alpha_m A:α1,α2,,αm线性表示,
⇔ R ( A ) = R ( A , b ) \Leftrightarrow R(A)=R(A,b) R(A)=R(A,b)

设有两个向量组 A : α 1 , α 2 , ⋯   , α m A:\alpha_1,\alpha_2,\cdots,\alpha_m A:α1,α2,,αm B : β 1 , β 2 , ⋯   , β l B:\beta_1,\beta_2,\cdots,\beta_l B:β1,β2,,βl
B B B组中的每一向量都能由向量组 A A A线性表示,则称向量组 B B B可由 A A A线性表示;
若向量组 A A A B B B能相互线性表示,则称这两个向量组等价

C m × n = A m × l B l × n C_{m\times n}=A_{m\times l}B_{l\times n} Cm×n=Am×lBl×n
C 的列向量组可由 A 的列向量组线性表示,系数矩阵为 B C 的行向量组可由 B 的行向量组线性表示,系数矩阵为 A C\text{的列向量组可由}A\text{的列向量组线性表示,系数矩阵为}B\\ C\text{的行向量组可由}B\text{的行向量组线性表示,系数矩阵为}A C的列向量组可由A的列向量组线性表示,系数矩阵为BC的行向量组可由B的行向量组线性表示,系数矩阵为A

2)向量组 B : β 1 , β 2 , ⋯   , β l B:\beta_1,\beta_2,\cdots,\beta_l B:β1,β2,,βl能由向量组 A : α 1 , α 2 , ⋯   , α m A:\alpha_1,\alpha_2,\cdots,\alpha_m A:α1,α2,,αm等价
⇔ R ( A ) = R ( A , B ) = R ( B ) \Leftrightarrow R(A)=R(A,B)=R(B) R(A)=R(A,B)=R(B)

3)设向量组 B : β 1 , β 2 , ⋯   , β l B:\beta_1,\beta_2,\cdots,\beta_l B:β1,β2,,βl可由向量组 A : α 1 , α 2 , ⋯   , α m A:\alpha_1,\alpha_2,\cdots,\alpha_m A:α1,α2,,αm线性表示:
⇒ R ( β 1 , β 2 , ⋯   , β l ) ⩽ R ( α 1 , α 2 , ⋯   , α m ) ⇔ 有矩阵 K , 使 B = A K ⇔ A x = B 有解 \Rightarrow R(\beta_1,\beta_2,\cdots,\beta_l)\leqslant R(\alpha_1,\alpha_2,\cdots,\alpha_m)\\ \Leftrightarrow \text{有矩阵}K,\text{使}B=AK\\ \Leftrightarrow Ax=B\text{有解} R(β1,β2,,βl)R(α1,α2,,αm)有矩阵K,使B=AKAx=B有解

线性相关和线性无关

给定向量组 A : α 1 , α 2 , ⋯   , α m A:\alpha_1,\alpha_2,\cdots,\alpha_m A:α1,α2,,αm,若存在不全为0的数 k 1 , k 2 , ⋯   , k m k_1,k_2,\cdots,k_m k1,k2,,km使:
k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0 k1α1+k2α2++kmαm=0
则称向量组 A A A线性相关的;若
k 1 = k 2 = ⋯ = k m = 0 k_1=k_2=\cdots=k_m=0 k1=k2==km=0
则称 A A A线性无关的。

性质

1)只含一个向量 α \alpha α的向量组:
α = 0 ⇒ 线性相关 α ≠ 0 ⇒ 线性无关 \alpha=0\Rightarrow \text{线性相关}\\ \alpha\neq 0\Rightarrow \text{线性无关} α=0线性相关α=0线性无关

2)含两个向量 α 1 , α 2 \alpha_1,\alpha_2 α1,α2的向量组。
α 1 , α 2 成比例 ⇒ 线性相关  \alpha_1,\alpha_2\text{成比例}\Rightarrow \text{线性相关}\ α1,α2成比例线性相关 

3)向量组 α 1 , α 2 , ⋯   , α m ( m ⩾ 2 ) \alpha_1,\alpha_2,\cdots,\alpha_m(m\geqslant 2) α1,α2,,αm(m2)线性相关,
⇔ 向量组 A 中至少有一个向量能由其余 m − 1 个向量线性表示 \Leftrightarrow \text{向量组}A\text{中至少有一个向量能由其余}m-1\text{个向量线性表示} 向量组A中至少有一个向量能由其余m1个向量线性表示

4)方程组 A x = b Ax=b Ax=b线性相关:
⇔ B = ( A , b ) 的行向量组线性相关 \Leftrightarrow B=(A,b)\text{的行向量组线性相关} B=(A,b)的行向量组线性相关

5) A x = 0 Ax=0 Ax=0有非零解, ⇔ ∣ A ∣ = 0 \Leftrightarrow |A|=0 A=0
⇔ A 线性相关 \Leftrightarrow A\text{线性相关} A线性相关

6)向量组 A : α 1 , α 2 , ⋯   , α m A:\alpha_1,\alpha_2,\cdots,\alpha_m A:α1,α2,,αm线性相关,
⇔ R ( A ) < m , ∣ A ∣ = 0 \Leftrightarrow R(A)<m,|A|=0 R(A)<m,A=0
A A A线性无关, ⇔ R ( A ) = m , ∣ A ∣ ≠ 0 \Leftrightarrow R(A)=m,|A|\neq 0 R(A)=m,A=0

7)若向量组 A : α 1 , α 2 , ⋯   , α m A:\alpha_1,\alpha_2,\cdots,\alpha_m A:α1,α2,,αm线性相关,则
向量组 B : α 1 , α 2 , ⋯   , α m , α m + 1 也线性相关 \text{向量组}B:\alpha_1,\alpha_2,\cdots,\alpha_m,\alpha_{m+1}\text{也线性相关} 向量组B:α1,α2,,αm,αm+1也线性相关
B B B线性无关 ⇒ A \Rightarrow A A也线性无关。

8) m m m n n n维向量组成的向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm
当 n < m 时,线性相关 \text{当}n<m\text{时,线性相关} n<m时,线性相关

9) n + 1 n+1 n+1 n n n维向量组一定线性相关。

10)设向量组 A : α 1 , α 2 , ⋯   , α m A:\alpha_1,\alpha_2,\cdots,\alpha_m A:α1,α2,,αm线性无关,而向量组 B : α 1 , α 2 , ⋯   , α m , b B:\alpha_1,\alpha_2,\cdots,\alpha_m,b B:α1,α2,,αm,b线性相关
b 必能由向量组 A 线性表示,且表示唯一 b\text{必能由向量组}A\text{线性表示,且表示唯一} b必能由向量组A线性表示,且表示唯一

10)含0向量的向量组必线性相关。

习题

1、已知 α 1 = ( 1 1 1 ) , α 2 = ( 0 2 5 ) , α 3 = ( 2 4 7 ) \alpha_1=\left( \begin{matrix} 1\\ 1\\ 1 \end{matrix} \right),\alpha_2=\left( \begin{matrix} 0\\ 2\\ 5 \end{matrix} \right),\alpha_3=\left( \begin{matrix} 2\\ 4\\ 7 \end{matrix} \right) α1= 111 ,α2= 025 ,α3= 247 ,试讨论向量组 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3及向量组 α 1 , α 2 \alpha_1,\alpha_2 α1,α2的线性相关性。

解: ∣ 1 0 2 1 2 4 1 5 7 ∣ = ∣ 1 0 2 0 2 2 0 5 5 ∣ = 0 ⇒ α 1 , α 2 , α 3 \left| \begin{matrix} 1&0&2\\ 1&2&4\\ 1&5&7 \end{matrix} \right|=\left| \begin{matrix} 1&0&2\\ 0&2&2\\ 0&5&5 \end{matrix} \right|=0\Rightarrow \alpha_1,\alpha_2,\alpha_3 111025247 = 100025225 =0α1,α2,α3线性相关;

( 1 0 1 2 1 5 ) → ( 1 0 0 1 0 0 ) , R = 2 ⇒ α 1 , α 2 线性无关 \left( \begin{matrix} 1&0\\ 1&2\\ 1&5 \end{matrix} \right)\to \left( \begin{matrix} 1&0\\ 0&1\\ 0&0 \end{matrix} \right),R=2 \Rightarrow \alpha_1,\alpha_2\text{线性无关} 111025 100010 ,R=2α1,α2线性无关

2、已知向量组 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性无关, β 1 = α 1 + α 2 , β 2 = α 2 + α 3 , β 3 = α 3 + α 1 \beta_1=\alpha_1+\alpha_2,\beta_2=\alpha_2+\alpha_3,\beta_3=\alpha_3+\alpha_1 β1=α1+α2,β2=α2+α3,β3=α3+α1,试证向量组 β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3线性无关。

证: { β 1 = α 1 + α 2 β 2 = α 2 + α 3 β 3 = α 3 + α 1 \begin{cases} \beta_1=\alpha_1+\alpha_2\\ \beta_2=\alpha_2+\alpha_3\\ \beta_3=\alpha_3+\alpha_1 \end{cases} β1=α1+α2β2=α2+α3β3=α3+α1
x 1 β 1 + x 2 β 2 + x 3 β 3 = 0 x_1\beta_1+x_2\beta_2+x_3\beta_3=0 x1β1+x2β2+x3β3=0
⇒ x 1 ( α 1 + α 2 ) + x 2 ( α 2 + α 3 ) + x 3 ( α 3 + α 1 ) = 0 ⇒ ( x 1 + x 3 ) α 1 + ( x 2 + x 1 ) α 2 + ( x 2 + x 3 ) α 3 = 0 因为 α 1 , α 2 , α 3 线性无关 ⇒ { x 1 + x 3 = 0 x 1 + x 2 = 0 x 2 + x 3 = 0 ⇒ ( 1 0 1 1 1 0 0 1 1 ) → ( 1 0 1 0 1 − 1 0 1 1 ) → ( 1 0 1 0 1 − 1 0 0 2 ) → ( 1 0 0 0 1 0 0 0 1 ) ⇒ x 1 = x 2 = x 3 = 0 ⇒ β 1 , β 2 , β 3 线性无关 \Rightarrow x_1(\alpha_1+\alpha_2)+x_2(\alpha_2+\alpha_3)+x_3(\alpha_3+\alpha_1)=0\\ \Rightarrow (x_1+x_3)\alpha_1+(x_2+x_1)\alpha_2+(x_2+x_3)\alpha_3=0\\ \text{因为}\alpha_1,\alpha_2,\alpha_3\text{线性无关}\\ \Rightarrow \begin{cases} x_1+x_3=0\\ x_1+x_2=0\\ x_2+x_3=0 \end{cases}\Rightarrow \left( \begin{matrix} 1&0&1\\ 1&1&0\\ 0&1&1 \end{matrix} \right)\to \left( \begin{matrix} 1&0&1\\ 0&1&-1\\ 0&1&1 \end{matrix} \right)\to \left( \begin{matrix} 1&0&1\\ 0&1&-1\\ 0&0&2 \end{matrix} \right)\to \left( \begin{matrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{matrix} \right)\\ \Rightarrow x_1=x_2=x_3=0 \Rightarrow\beta_1,\beta_2,\beta_3\text{线性无关} x1(α1+α2)+x2(α2+α3)+x3(α3+α1)=0(x1+x3)α1+(x2+x1)α2+(x2+x3)α3=0因为α1,α2,α3线性无关 x1+x3=0x1+x2=0x2+x3=0 110011101 100011111 100010112 100010001 x1=x2=x3=0β1,β2,β3线性无关

3、设 A m × n A_{m\times n} Am×n的秩 R ( A ) = m < n R(A)=m<n R(A)=m<n,则(C)

A) A A A的任意一个 m m m阶子式不为0;
B) A A A的任意 m m m个列向量所组成向量组线性无关;
C)若 B A = 0 BA=0 BA=0,则 B = 0 B=0 B=0
D)通过矩阵的初等行变换,必可化为 ( E m , 0 ) (E_m,0) (Em,0)的形式

解: B A = 0 ⇒ R ( A ) + R ( B ) ⩽ m , R ( A ) = m ⇒ R ( B ) = 0 BA=0\Rightarrow R(A)+R(B)\leqslant m,R(A)=m\Rightarrow R(B)=0 BA=0R(A)+R(B)m,R(A)=mR(B)=0

4、设矩阵 A = ( α 1 , α 2 , α 3 , α 4 ) A=(\alpha_1,\alpha_2,\alpha_3,\alpha_4) A=(α1,α2,α3,α4),其中 α 1 , α 2 , α 3 , α 4 \alpha_1,\alpha_2,\alpha_3,\alpha_4 α1,α2,α3,α4为6维非0向量。
ξ 1 = ( 3 , 2 , 2 , 2 ) T \xi_1=(3,2,2,2)^T ξ1=(3,2,2,2)T ξ 2 = ( 1 , 2 , 2 , 6 ) T \xi_2=(1,2,2,6)^T ξ2=(1,2,2,6)T是齐次线性方程 A x = 0 Ax=0 Ax=0的基础解系,则 R ( A ) = 4 − 2 = 2 R(A)=4-2=2 R(A)=42=2

5、设有 n n n元非齐次方程 A x = b Ax=b Ax=b,则(C)。

A)若 A x = 0 Ax=0 Ax=0只有零解,则 A x = b Ax=b Ax=b有唯一解;
B) A x = b Ax=b Ax=b有唯一解的充要条件是 R ( A = n ) R(A=n) R(A=n)
C) A x = b Ax=b Ax=b有2个不同解,则 A x = b Ax=b Ax=b有无穷多解;
D) A x = b Ax=b Ax=b有2个不同解,则 A x = 0 Ax=0 Ax=0的基础解系中含有2个以上向量。

解: ∣ A ∣ ≠ 0 |A|\neq0 A=0,但 A x = b Ax=b Ax=b不一定有解;
A x = b Ax=b Ax=b有2个不同解 η 1 , η 2 \eta_1,\eta_2 η1,η2,故 η 1 − η 2 ≠ 0 \eta_1-\eta_2\neq 0 η1η2=0 A x = 0 Ax=0 Ax=0的解。

6、设 β 1 = α 1 + α 2 , β 2 = α 2 + α 3 , β 3 = α 3 + α 4 , β 4 = α 4 + α 1 \beta_1=\alpha_1+\alpha_2,\beta_2=\alpha_2+\alpha_3,\beta_3=\alpha_3+\alpha_4,\beta_4=\alpha_4+\alpha_1 β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1,证明向量组 β 1 , β 2 , β 3 , β 4 \beta_1,\beta_2,\beta_3,\beta_4 β1,β2,β3,β4线性相关。

解: ( β 1 β 2 β 3 β 4 ) = ( 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 ) ( α 1 α 2 α 3 α 4 ) = A α \left( \begin{matrix} \beta_1\\ \beta_2\\ \beta_3\\ \beta_4 \end{matrix} \right)=\left( \begin{matrix} 1&1&0&0\\ 0&1&1&0\\ 0&0&1&1\\ 1&0&0&1 \end{matrix} \right)\left( \begin{matrix} \alpha_1\\ \alpha_2\\ \alpha_3\\ \alpha_4 \end{matrix} \right)=A\alpha β1β2β3β4 = 1001110001100011 α1α2α3α4 =Aα
( 1 1 0 0 0 1 1 0 0 0 1 1 0 − 1 0 1 ) → ( 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 ) → ( 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 ) → ( 1 1 0 0 0 1 0 − 1 0 0 1 1 0 0 0 0 ) ⇒ R ( β 1 , β 2 , β 3 , β 4 ) ⩽ R ( A ) = 3 < 4 ⇒ β 1 , β 2 , β 3 , β 4 线性相关 \left( \begin{matrix} 1&1&0&0\\ 0&1&1&0\\ 0&0&1&1\\ 0&-1&0&1 \end{matrix} \right)\to \left( \begin{matrix} 1&1&0&0\\ 0&1&1&0\\ 0&0&1&1\\ 0&0&1&1 \end{matrix} \right)\to \left( \begin{matrix} 1&1&0&0\\ 0&1&1&0\\ 0&0&1&1\\ 0&0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&1&0&0\\ 0&1&0&-1\\ 0&0&1&1\\ 0&0&0&0 \end{matrix} \right)\\ \Rightarrow R(\beta_1,\beta_2,\beta_3,\beta_4)\leqslant R(A)=3<4\\ \Rightarrow \beta_1,\beta_2,\beta_3,\beta_4\text{线性相关} 1000110101100011 1000110001110011 1000110001100010 1000110000100110 R(β1,β2,β3,β4)R(A)=3<4β1,β2,β3,β4线性相关

7、设 β 1 = α 1 , β 2 = α 1 + α 2 , ⋯   , β r = α 1 + α 2 + ⋯ + α r \beta_1=\alpha_1,\beta_2=\alpha_1+\alpha_2,\cdots,\beta_r=\alpha_1+\alpha_2+\cdots+\alpha_r β1=α1,β2=α1+α2,,βr=α1+α2++αr,且向量组 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr线性无关,证明: β 1 , β 2 , ⋯   , β r \beta_1,\beta_2,\cdots,\beta_r β1,β2,,βr线性无关。

证: ( β 1 , β 2 , ⋯   , β r ) = ( α 1 , α 2 , ⋯   , α r ) ( 1 1 ⋯ 1 0 1 ⋯ 1 ⋮ ⋮ ⋮ 0 0 ⋯ 1 ) = ( α 1 , α 2 , ⋯   , α r ) K (\beta_1,\beta_2,\cdots,\beta_r)=(\alpha_1,\alpha_2,\cdots,\alpha_r)\left( \begin{matrix} 1&1&\cdots&1\\ 0&1&\cdots&1\\ \vdots&\vdots&&\vdots\\ 0&0&\cdots&1 \end{matrix} \right)=(\alpha_1,\alpha_2,\cdots,\alpha_r)K (β1,β2,,βr)=(α1,α2,,αr) 100110111 =(α1,α2,,αr)K
∣ K ∣ = 1 ≠ 0 ⇒ K 可逆 ⇒ R ( β 1 , β 2 , ⋯   , β r ) = R ( α 1 , α 2 , ⋯   , α r ) = r ⇒ β 1 , β 2 , ⋯   , β r 线性无关 |K|=1\neq 0\Rightarrow K\text{可逆}\\ \Rightarrow R(\beta_1,\beta_2,\cdots,\beta_r)=R(\alpha_1,\alpha_2,\cdots,\alpha_r)=r\\ \Rightarrow \beta_1,\beta_2,\cdots,\beta_r\text{线性无关} K=1=0K可逆R(β1,β2,,βr)=R(α1,α2,,αr)=rβ1,β2,,βr线性无关

8、已知3阶矩阵 A A A与3维列向量 x x x满足 A 3 x = 3 A x − A 2 x A^3x=3Ax-A^2x A3x=3AxA2x,且向量组 x , A x , A 2 x x,Ax,A^2x x,Ax,A2x线性无关。
(1)记 y = A x , Z = A y , P = ( x , y , z ) y=Ax,Z=Ay,P=(x,y,z) y=Ax,Z=Ay,P=(x,y,z),求3阶矩阵 B B B,使 A P = P B AP=PB AP=PB
(2)求 ∣ A ∣ |A| A

解:(1) P = ( x , y , z ) = ( x , A x , A 2 x ) 线性无关 P=(x,y,z)=(x,Ax,A^2x)\text{线性无关} P=(x,y,z)=(x,Ax,A2x)线性无关
⇒ R ( P ) = 3 ⇒ ∣ P ∣ ≠ 0 ⇒ P 可逆 ⇒ B = P − 1 A P A P = ( A x , A y , A z ) = ( y , z , 3 A x − A 2 x ) = ( y , z , 3 y − z ) = ( x , y , z ) ( 0 0 0 1 0 3 0 1 − 1 ) = P ( 0 0 0 1 0 3 0 1 − 1 ) ⇒ B = P − 1 A P = ( 0 0 0 1 0 3 0 1 − 1 ) \Rightarrow R(P)=3\Rightarrow |P|\neq 0 \Rightarrow P\text{可逆}\\ \Rightarrow B=P^{-1}AP\\ AP=(Ax,Ay,Az)=(y,z,3Ax-A^2x)=(y,z,3y-z)\\ =(x,y,z)\left( \begin{matrix} 0&0&0\\ 1&0&3\\ 0&1&-1 \end{matrix} \right)=P\left( \begin{matrix} 0&0&0\\ 1&0&3\\ 0&1&-1 \end{matrix} \right)\\ \Rightarrow B=P^{-1}AP=\left( \begin{matrix} 0&0&0\\ 1&0&3\\ 0&1&-1 \end{matrix} \right) R(P)=3P=0P可逆B=P1APAP=(Ax,Ay,Az)=(y,z,3AxA2x)=(y,z,3yz)=(x,y,z) 010001031 =P 010001031 B=P1AP= 010001031

(2) B = P − 1 A P ⇒ ∣ B ∣ = ∣ P − 1 ∣ ⋅ ∣ A ∣ ⋅ ∣ P ∣ = ∣ A ∣ = ∣ 0 0 0 1 0 3 0 1 − 1 ∣ = 0 B=P^{-1}AP\Rightarrow |B|=|P^{-1}|\cdot|A|\cdot|P|=|A|=\left| \begin{matrix} 0&0&0\\ 1&0&3\\ 0&1&-1 \end{matrix} \right|=0 B=P1APB=P1AP=A= 010001031 =0

9、设有向量组 A : α 1 = ( α 2 10 ) , α 2 = ( − 2 1 5 ) , α 3 = ( − 1 1 4 ) A:\alpha_1=\left( \begin{matrix} \alpha\\ 2\\ 10 \end{matrix} \right),\alpha_2=\left( \begin{matrix} -2\\ 1\\ 5 \end{matrix} \right),\alpha_3=\left( \begin{matrix} -1\\ 1\\ 4 \end{matrix} \right) A:α1= α210 ,α2= 215 ,α3= 114 及向量 b = ( 1 β − 1 ) b=\left( \begin{matrix} 1\\ \beta\\ -1 \end{matrix} \right) b= 1β1 ,问 α , β \alpha,\beta α,β为何值:
(1) b b b不能由 A A A线性表示;
(2) b b b能由 A A A线性表示,且表示唯一;
(3) b b b能由 A A A线性表示,且表示不唯一,求一般表示式。

解: A x = b Ax=b Ax=b
∣ A ∣ = ∣ α − 2 − 1 2 1 1 10 5 4 ∣ ≠ 0 = ∣ α + 2 − 1 0 2 1 1 2 1 0 ∣ = − ∣ α + 2 − 1 2 1 ∣ = − ( α + 4 ) ⇒ α ≠ − 4 |A|=\left| \begin{matrix} \alpha&-2&-1\\ 2&1&1\\ 10&5&4 \end{matrix} \right|\neq 0=\left| \begin{matrix} \alpha+2&-1&0\\ 2&1&1\\ 2&1&0 \end{matrix} \right|=-\left| \begin{matrix} \alpha+2&-1\\ 2&1 \end{matrix} \right|=-(\alpha+4)\Rightarrow \alpha\neq -4 A= α210215114 =0= α+222111010 = α+2211 =(α+4)α=4

(2) α ≠ − 4 \alpha\neq -4 α=4时, b b b能由 A A A唯一线性表示;

(1)当 α = − 4 \alpha= -4 α=4时,
( − 4 − 2 − 1 1 2 1 1 β 10 5 4 − 1 ) → ( 2 1 1 β 0 0 1 1 + 2 β 0 0 − 1 − 1 − 5 β ) → ( 2 1 1 β 0 0 1 1 + 2 β 0 0 0 − 3 β ) \left( \begin{matrix} -4&-2&-1&1\\ 2&1&1&\beta\\ 10&5&4&-1 \end{matrix} \right)\to \left( \begin{matrix} 2&1&1&\beta\\ 0&0&1&1+2\beta\\ 0&0&-1&-1-5\beta \end{matrix} \right)\to \left( \begin{matrix} 2&1&1&\beta\\ 0&0&1&1+2\beta\\ 0&0&0&-3\beta \end{matrix} \right) 42102151141β1 200100111β1+2β15β 200100110β1+2β3β
β ≠ 0 \beta\neq 0 β=0时,无解

(3)当 α = − 4 , β = 0 \alpha= -4,\beta=0 α=4,β=0时,
( 2 1 1 0 0 0 1 1 0 0 − 1 − 1 ) → ( 2 1 0 − 1 0 0 1 1 0 0 0 0 ) → ( 1 1 2 0 − 1 2 0 0 1 1 0 0 0 0 ) ⇒ x = ( − 1 2 0 1 ) + c ( − 1 2 1 0 ) ( c ∈ R ) \left( \begin{matrix} 2&1&1&0\\ 0&0&1&1\\ 0&0&-1&-1 \end{matrix} \right)\to \left( \begin{matrix} 2&1&0&-1\\ 0&0&1&1\\ 0&0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&\frac{1}{2}&0&-\frac{1}{2}\\ 0&0&1&1\\ 0&0&0&0 \end{matrix} \right)\\ \Rightarrow x=\left( \begin{matrix} -\frac{1}{2}\\ 0\\ 1 \end{matrix} \right)+c\left( \begin{matrix} -\frac{1}{2}\\ 1\\ 0 \end{matrix} \right)(c\in R) 200100111011 200100010110 10021000102110 x= 2101 +c 2110 (cR)

极大线性无关组

设有向量组 A A A,若在 A A A中能选出 r r r个向量 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr,满足:

(i)向量组 A 0 : α 1 , α 2 , ⋯   , α r A_0:\alpha_1,\alpha_2,\cdots,\alpha_r A0:α1,α2,,αr线性无关
(ii) A A A中任意 r + 1 r+1 r+1个向量(有的话)都线性相关

则称向量组 A 0 A_0 A0 A A A的一个极大线性无关组

r r r——向量组 A A A的秩

只含0向量的向量组无极大线性无关组 r = 0 r=0 r=0

A A A线性无关, A A A本身就是其极大线性无关组, r = m r=m r=m(向量个数)
A ∼ 其极大线性无关组 A 0 A\sim \text{其极大线性无关组}A_0 A其极大线性无关组A0

(i)' A 0 A_0 A0线性无关;
(ii)' A A A的任一向量都能由 A 0 A_0 A0线性表示。

性质

1)矩阵的秩 = = =它的列向量组的秩 = = =它的行向量组的秩;

2)向量组 b 1 , b 2 , ⋯   , b l b_1,b_2,\cdots,b_l b1,b2,,bl可由向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm线性表示:
⇔ R ( α 1 , α 2 , ⋯   , α m ) = R ( α 1 , α 2 , ⋯   , α m , b 1 , ⋯   , b l ) \Leftrightarrow R(\alpha_1,\alpha_2,\cdots,\alpha_m)=R(\alpha_1,\alpha_2,\cdots,\alpha_m,b_1,\cdots,b_l) R(α1,α2,,αm)=R(α1,α2,,αm,b1,,bl)

3)向量组 B B B能由 A A A线性表示:
⇔ R ( B ) ⩽ R ( A ) \Leftrightarrow R(B)\leqslant R(A) R(B)R(A)

习题

1、 A = ( 2 − 1 − 1 1 2 1 1 − 2 1 4 4 − 6 2 − 2 4 3 6 − 9 7 9 ) A=\left( \begin{matrix} 2&-1&-1&1&2\\ 1&1&-2&1&4\\ 4&-6&2&-2&4\\ 3&6&-9&7&9 \end{matrix} \right) A= 21431166122911272449
A A A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。

解:
( 2 − 1 − 1 1 2 1 1 − 2 1 4 4 − 6 2 − 2 4 3 6 − 9 7 9 ) → ( 1 1 − 2 1 4 0 − 3 3 − 1 − 6 0 − 10 10 − 6 − 12 0 3 − 3 4 − 3 ) → ( 1 1 − 2 1 4 0 1 − 1 1 3 2 0 − 10 10 − 6 − 12 0 0 0 3 − 9 ) → ( 1 1 − 2 1 4 0 1 − 1 1 3 2 0 0 0 − 8 3 8 0 0 0 1 − 3 ) → ( 1 1 − 2 1 4 0 1 − 1 1 3 2 0 0 0 1 − 3 0 0 0 0 0 ) → ( 1 1 − 2 0 7 0 1 − 1 0 3 0 0 0 1 − 3 0 0 0 0 0 ) → ( 1 0 − 1 0 4 0 1 − 1 0 3 0 0 0 1 − 3 0 0 0 0 0 ) ⇒ α 1 , α 2 , α 4 为列向量组的一个极大无关组 ⇒ α 3 = − α 1 − α 2 , α 5 = 4 α 1 + 3 α 2 − 3 α 4 \left( \begin{matrix} 2&-1&-1&1&2\\ 1&1&-2&1&4\\ 4&-6&2&-2&4\\ 3&6&-9&7&9 \end{matrix} \right)\to \left( \begin{matrix} 1&1&-2&1&4\\ 0&-3&3&-1&-6\\ 0&-10&10&-6&-12\\ 0&3&-3&4&-3 \end{matrix} \right)\to \left( \begin{matrix} 1&1&-2&1&4\\ 0&1&-1&\frac{1}{3}&2\\ 0&-10&10&-6&-12\\ 0&0&0&3&-9 \end{matrix} \right)\\ \to \left( \begin{matrix} 1&1&-2&1&4\\ 0&1&-1&\frac{1}{3}&2\\ 0&0&0&-\frac{8}{3}&8\\ 0&0&0&1&-3 \end{matrix} \right)\to \left( \begin{matrix} 1&1&-2&1&4\\ 0&1&-1&\frac{1}{3}&2\\ 0&0&0&1&-3\\ 0&0&0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&1&-2&0&7\\ 0&1&-1&0&3\\ 0&0&0&1&-3\\ 0&0&0&0&0 \end{matrix} \right)\\\to \left( \begin{matrix} 1&0&-1&0&4\\ 0&1&-1&0&3\\ 0&0&0&1&-3\\ 0&0&0&0&0 \end{matrix} \right)\Rightarrow \alpha_1,\alpha_2,\alpha_4\text{为列向量组的一个极大无关组}\\ \Rightarrow \alpha_3=- \alpha_1- \alpha_2, \alpha_5=4 \alpha_1+3 \alpha_2-3 \alpha_4 21431166122911272449 10001310323103116446123 100011100211001316342129 1000110021001313814283 100011002100131104230 10001100210000107330 10000100110000104330 α1,α2,α4为列向量组的一个极大无关组α3=α1α2,α5=4α1+3α23α4

2、利用初等行变换求下列矩阵的列向量组的一个极大无关组,并把其余列向量用极大无关组线性表示。
( 25 31 17 43 75 94 53 132 75 94 54 134 25 32 20 48 ) \left( \begin{matrix} 25&31&17&43\\ 75&94&53&132\\ 75&94&54&134\\ 25&32&20&48 \end{matrix} \right) 2575752531949432175354204313213448

解:
( 25 31 17 43 75 94 53 132 75 94 54 134 25 32 20 48 ) → ( 25 31 17 43 0 1 2 3 0 1 3 5 0 1 3 5 ) → ( 25 31 17 43 0 1 2 3 0 1 3 5 0 0 0 0 ) → ( 25 31 17 43 0 1 2 3 0 0 1 2 0 0 0 0 ) → ( 25 31 0 9 0 1 0 − 1 0 0 1 2 0 0 0 0 ) → ( 25 0 0 40 0 1 0 − 1 0 0 1 2 0 0 0 0 ) → ( 1 0 0 8 5 0 1 0 − 1 0 0 1 2 0 0 0 0 ) ⇒ α 1 , α 2 , α 3 为一个极大无关组 α 4 = 8 5 α 1 − α 2 + 2 α 3 \left( \begin{matrix} 25&31&17&43\\ 75&94&53&132\\ 75&94&54&134\\ 25&32&20&48 \end{matrix} \right)\to \left( \begin{matrix} 25&31&17&43\\ 0&1&2&3\\ 0&1&3&5\\ 0&1&3&5 \end{matrix} \right)\to \left( \begin{matrix} 25&31&17&43\\ 0&1&2&3\\ 0&1&3&5\\ 0&0&0&0 \end{matrix} \right)\\ \to \left( \begin{matrix} 25&31&17&43\\ 0&1&2&3\\ 0&0&1&2\\ 0&0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 25&31&0&9\\ 0&1&0&-1\\ 0&0&1&2\\ 0&0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 25&0&0&40\\ 0&1&0&-1\\ 0&0&1&2\\ 0&0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&0&0&\frac{8}{5}\\ 0&1&0&-1\\ 0&0&1&2\\ 0&0&0&0 \end{matrix} \right)\\ \Rightarrow \alpha_1,\alpha_2,\alpha_3\text{为一个极大无关组}\\ \alpha_4=\frac{8}{5}\alpha_1-\alpha_2+2\alpha_3 2575752531949432175354204313213448 25000311111723343355 25000311101723043350 25000311001721043320 250003110000109120 250000100001040120 10000100001058120 α1,α2,α3为一个极大无关组α4=58α1α2+2α3

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值