线性代数第二章矩阵及其运算

$1.矩阵

定义1
由 m ∗ n 个 数 a i j ( i = 1 , 2 , 3... , n ) 排 成 的 m 行 n 列 的 数 表 由m*n个数a_{ij}(i=1,2,3...,n)排成的m行n列的数表 mnaij(i=1,2,3...,n)mn
在这里插入图片描述
称为m行n列矩阵,简称mn矩阵。为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示,记作
在这里插入图片描述
这m
n个数称为矩阵A的元素,简称为元,数 a i j a{ij} aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元。以数 a i , j 元 的 矩 阵 可 简 记 作 ( a i j ) 或 ( a i j ) m ∗ n . m ∗ n 矩 阵 A 也 记 作 A m ∗ n a_{i,j}元的矩阵可简记作(a_{ij})或(a_{ij})m*n. m*n矩阵A也记作A_{m*n} ai,j(aij)(aij)mn.mnAAmn.
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵,本书中的矩阵除特别说明者外,都指实矩阵。
行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。n阶矩阵A也记作An。
只有一行的矩阵
A = ( a 1 , a 2 , . . . , a n ) A=(a_1,a_2,...,a_n) A=(a1,a2,...,an).
只有一列的矩阵
在这里插入图片描述
称为列矩阵,又称列向量。
两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵。如果 A = ( a i j ) 与 B = ( b i j ) 是 同 型 矩 阵 , 并 且 它 们 的 对 应 元 素 相 等 , 即 A=(a_{ij})与B=(b_{ij})是同型矩阵,并且它们的对应元素相等,即 A=(aij)B=(bij)
在这里插入图片描述
那么就称矩阵A与矩阵B相等,记作
A=B
元素都为零的矩阵称为零矩阵,记作O。注意不同型的零矩阵是不同的。
矩阵的应用非常广泛,下面仅举几例。

例1

某工厂三个商店发送四种产品的数量可列成矩阵
在这里插入图片描述
其中 a i j 为 工 厂 向 第 i 店 发 送 第 j 种 产 品 的 数 量 。 a_{ij}为工厂向第i店发送第j种产品的数量。 aijij
这四种产品的单价及单件重量也可列成矩阵
在这里插入图片描述
其中 b i 1 为 第 i 种 产 品 的 单 价 , b i 2 为 第 i 种 产 品 的 单 件 重 量 b_{i1}为第i种产品的单价,b_{i2}为第i种产品的单件重量 bi1ibi2i

例2

四个城市间的单向航线如图2.1所示:
在这里插入图片描述
若令
a i j = { 1 , 从 i 市 到 j 市 有 1 条 单 向 航 线 , 0 , 从 i 市 到 j 市 没 有 单 向 航 线 . a_{ij}=\begin{cases} 1,从i市到j市有1条单向航线,\\ 0,从i市到j市没有单向航线. \end{cases} aij={ 1,ij1线0ij线.
则图2.1可用矩阵表示为
在这里插入图片描述
一般的,若干个点之间的单向通道都可以用这样的矩阵表示。

例3

n 个 变 量 x 1 , x 2 , . . . , x n 与 m 个 变 量 y 1 , y 2 , . . . , y m 之 间 的 关 系 式 n个变量x_1,x_2,...,x_n与m个变量y_1,y_2,...,y_m之间的关系式 nx1,x2,...,xnmy1,y2,...,ym
在这里插入图片描述
表示一个从变量 x 1 , x 2 , . . . , x n 到 变 量 y 1 , y 2 , . . . , y m 的 线 性 变 换 , 其 中 a i j 为 常 数 。 线 性 变 换 ( 2 ) 的 系 数 a i j 构 成 矩 阵 A = ( a i j ) m ∗ n x_1,x_2,...,x_n到变量y_1,y_2,...,y_m的线性变换,其中a_{ij}为常数。线性变换(2)的系数a_{ij}构成矩阵A=(a_{ij})_{m*n} x1,x2,...,xny1,y2,...,ym线aij线2aijA=(aij)mn
给定了线性变换(2),它的系数所构成的矩阵(称为系数矩阵)也就确定。反之,如果给出一个矩阵作为线性变换的系数矩阵,则线性变换也就确定。在这个意义上,线性变换和矩阵之间存在着一一对应的关系。
例如线性变换
在这里插入图片描述
叫做恒等变换,它对应的一个n阶方阵
在这里插入图片描述
叫做n阶单位矩阵,简称单位阵。这个方阵的特点是:从左上角到右下角的直线(叫做(主)对角线上的元素都是1,其他元素都是0.即单位阵E的(i,j)元为)
在这里插入图片描述
又如线性变换
在这里插入图片描述
对应n阶方阵
在这里插入图片描述
这个方阵的特点是:不在对角线上的元素都是0.这种方阵为对角矩阵,简称对角阵。对角阵也记作
在这里插入图片描述
由于矩阵和线性变换之间存在一一对应的关系,因此可以利用矩阵来研究线性变换,也可以利用线性变换来解释矩阵的含义。
例如矩阵
( 1 0 0 0 ) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\quad (1000)
所对应的线性变换
{ x 1 = x , y 1 = 0 \begin{cases} x_1=x, \\ y_1=0 \end{cases} { x1=x,y1=0
可看作是xOy平面上把向量OP= ( x 1 y 1 ) = ( x 0 ) \begin{pmatrix}x_1 \\ y_1 \end{pmatrix}=\begin{pmatrix}x \\ 0 \end{pmatrix} (x1y1)=(x0)的变换(或看作把点P变为点P1的变换,参看图2.2),由于向量OP1是向量OP在x轴上的投影向量(即点P1是点P在x轴上的投影),因此这是一个投影变换。
在这里插入图片描述
在这里插入图片描述

$2.矩阵的运算

一、矩阵的加法
定义2 设 有 两 个 m ∗ n 矩 阵 A = ( a i j ) 和 B = b i j , 那 么 矩 阵 A 和 B 的 和 记 作 A + B , 规 定 为 设有两个m*n矩阵A=(a_{ij})和B={b_{ij}},那么矩阵A和B的和记作A+B,规定为 mnA=(aij)B=bij,ABA+B

在这里插入图片描述
应该注意,只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。
矩阵加法满足下列运算规律(设A,B,C都是m*n矩阵)
( 1 ) A + B = B + A (1)A+B=B+A (1)A+B=B+A
( 2 ) ( A + B ) + C = A + ( B + C ) (2)(A+B)+C=A+(B+C) (2)(A+B)+C=A+(B+C).
设 矩 阵 A = ( a i j ) , 记 设矩阵A=(a_{ij}),记 A=(aij),
− A = ( − a i j ) -A=(-a_{ij}) A=(aij)
-A称为矩阵A的负矩阵,显然有
A+(-A)=O,
由此规定矩阵的减法为
A-B=A+(-B).

二、数与矩阵相乘
定义3 数 λ 与 矩 阵 A 的 乘 积 记 作 λ A 或 A λ , 规 定 为 数\lambda 与矩阵A的乘积记作\lambda A或A \lambda,规定为 λAλAAλ,

在这里插入图片描述
数 乘 矩 阵 满 足 下 列 运 算 规 律 ( 设 A , B 为 m ∗ n 矩 阵 , λ , μ 为 数 ) : 数乘矩阵满足下列运算规律(设A,B为m*n矩阵,\lambda,\mu 为数): A,Bmnλ,μ
( 1 ) ( λ μ ) A = λ ( μ A ) ; (1)(\lambda \mu)A=\lambda(\mu A); (1)(λμ)A=λ(μA);
( 2 ) ( λ + μ ) A = λ A + μ A ; (2)(\lambda+\mu)A=\lambda A+\mu A; (2)(λ+μ)A=λA+μA;
( 3 ) λ ( A + B ) = λ A + λ B . (3)\lambda(A+B)=\lambda A+\lambda B. (3)λ(A+B)=λ

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值