整数划分问题

问题描述:

将正整数n表示成一系列正整数之和:n=n1+n2+…+nk,其中n1≥n2≥…≥nk≥1,k≥1。正整数n的这种表示称为正整数n的划分。求正整数n的不

同划分个数。 

例如:正整数6有如下11种不同的划分:

    6;

    5+1;

    4+2,4+1+1;

    3+3,3+2+1,3+1+1+1;

    2+2+2,2+2+1+1,2+1+1+1+1;

    1+1+1+1+1+1。

解法:

设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。



显然,当m为1时只有一种结果,因为任何数的1划分都只有一种;
            当n < m时q(n,n)的意思为用比n大的数去划分n其实结果和用n划分n一致,所以用q(n,n)表示,例如用7划分6其实本质上是用6划分6,因为7比6大;
            当n = m时,可转换为 1 + q(n,n-1),理由是用n去划分n只有一种结果,并且借用递归的思想降低问题规模;
            当n > m > 1时,问题可变为两部分,一个是q(n,m-1)的求解【还是降低规模的应用,用下一个较小数去划分】,另一个是q(n-m,m),因为虽然第一部分是将当前规模降到下一规模,但是对于当前规模并没有进行相关处理,所以缩小n到n - m并进行递归。

求解的结果:

输入: 6   6
输出: 11

#include <iostream>

using namespace std;

//整数划分问题
int Partition(int n,int m)
{
    if(m == 1)
    {
        return 1;
    }

    if(n < m)
    {
        return Partition(n,n);
    }

    if(n == m)
    {
        return 1 + Partition(n,n-1);
    }

    if(n > m && m > 1)
    {
        return Partition(n,m-1) + Partition(n-m,m);
    }
}
int main()
{

    int m,n;
    cin >> n >> m;

    int temp = Partition(n,m);
    cout << temp << endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值