问题
在实数域上线性空间 C [ − π , π ] C[-\pi,\pi] C[−π,π]内判断下列向量组是否线性相关,并求它的秩: 1 , s i n x , s i n 2 x , s i n 3 x , ⋯ , s i n n x 1,sinx,sin2x,sin3x,\cdots,sinnx 1,sinx,sin2x,sin3x,⋯,sinnx
引理
设 f i ( x ) f_i(x) fi(x)是数域 K K K上的 i i i次多项式,其首项系数为 a i ( i = 0 , 1 , 2 , ⋯ , n − 1 ) a_i(i=0,1,2,\cdots,n-1) ai(i=0,1,2,⋯,n−1).又设 b 1 , b 2 , ⋯ , b n b_1,b_2,\cdots,b_n b1,b2,⋯,bn是 K K K内一组两两互不相同的数。则下列 n n n阶矩阵: [ f 0 ( b 1 ) f 0 ( b 2 ) ⋯ f 0 ( b n ) f 1 ( b 1 ) f 1 ( b 2 ) ⋯ f 1 ( b n ) ⋮ ⋮ ⋮ f n − 1 ( b 1 ) f n − 1 ( b 2 ) ⋯ f n − 1 ( b n ) ] \begin{bmatrix} f_0(b_1) & f_0(b_2) & \cdots & f_0(b_n) \\ f_1(b_1) & f_1(b_2) & \cdots & f_1(b_n) \\ \vdots & \vdots & & \vdots \\ f_{n-1}(b_1) & f_{n-1}(b_2) & \cdots & f_{n-1}(b_n) \\ \end{bmatrix} ⎣⎢⎢⎢⎡f0(b1)f1(b1)⋮fn−1(b1)f0(b2)f1(b2)⋮fn−1(b2)⋯⋯⋯f0(bn)f1(bn)⋮fn−1(bn)⎦⎥⎥⎥⎤
满秩。
引理证明
记 f i ( x ) = ∑ k = 0 n − 1 a i k x i − k f_i(x)=\sum_{k=0}^{n-1}a_{ik}x^{i-k} fi(x)=∑k=0n−1aikxi−k,其中, a i k ∈ K , a i 0 = a i a_{ik}\in K, a_{i0}=a_i aik∈K,ai0=ai且 i < k i<k i<k时, a i k = 0 a_{ik}=0 aik=0。规定 f i ( 0 ) = 0 f_i(0)=0 fi(0)=0。
有 ∣ f 0 ( b 1 ) f 0 ( b 2 ) ⋯ f 0 ( b n ) f 1 ( b 1 ) f 1 ( b 2 ) ⋯ f 1 ( b n ) ⋮ ⋮ ⋮ f n − 1 ( b 1 ) f n − 1 ( b 2 ) ⋯ f n − 1 ( b n ) ∣ = ∣ ∑ k 0 = 0 n − 1 a 0 k 0 b 1 0 − k 0 ∑ k 0 = 0 n − 1 a 0 k 0 b 2 0 − k 0 ⋯ ∑ k 0 = 0 n − 1 a 0 k 0 b n 0 − k 0 ∑ k 1 = 0 n − 1 a 1 k 1 b 1 1 − k 1 ∑ k 1 = 0 n − 1 a 1 k 1 b 2 1 − k 1 ⋯ ∑ k 1 = 0 n − 1 a 1 k 1 b n 1 − k 1 ⋮ ⋮ ⋮ ∑ k n − 1 = 0 n − 1 a n − 1 k n − 1 b 1 n − 1 − k n − 1 ∑ k n − 1 = 0 n − 1 a n − 1 k n − 1 b 2 n − 1 − k n − 1 ⋯ ∑ k n − 1 = 0 n − 1 a n − 1 k n − 1 b n n − 1 − k n − 1 ∣ = ∑ k 0 = 0 n − 1 ∑ k 1 = 0 n − 1 ⋯ ∑ k n − 1 = 0 n − 1 ∣ a 0 k 0 b 1 0 − k 0 a 0 k 0 b 2 0 − k 0 ⋯ a 0 k 0 b n 0 − k 0