一个应用范德蒙行列式的例子

问题

在实数域上线性空间 C [ − π , π ] C[-\pi,\pi] C[π,π]内判断下列向量组是否线性相关,并求它的秩: 1 , s i n x , s i n 2 x , s i n 3 x , ⋯   , s i n n x 1,sinx,sin2x,sin3x,\cdots,sinnx 1,sinx,sin2x,sin3x,,sinnx

引理

f i ( x ) f_i(x) fi(x)是数域 K K K上的 i i i次多项式,其首项系数为 a i ( i = 0 , 1 , 2 , ⋯   , n − 1 ) a_i(i=0,1,2,\cdots,n-1) ai(i=0,1,2,,n1).又设 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn K K K内一组两两互不相同的数。则下列 n n n阶矩阵: [ f 0 ( b 1 ) f 0 ( b 2 ) ⋯ f 0 ( b n ) f 1 ( b 1 ) f 1 ( b 2 ) ⋯ f 1 ( b n ) ⋮ ⋮ ⋮ f n − 1 ( b 1 ) f n − 1 ( b 2 ) ⋯ f n − 1 ( b n ) ] \begin{bmatrix} f_0(b_1) & f_0(b_2) & \cdots & f_0(b_n) \\ f_1(b_1) & f_1(b_2) & \cdots & f_1(b_n) \\ \vdots & \vdots & & \vdots \\ f_{n-1}(b_1) & f_{n-1}(b_2) & \cdots & f_{n-1}(b_n) \\ \end{bmatrix} f0(b1)f1(b1)fn1(b1)f0(b2)f1(b2)fn1(b2)f0(bn)f1(bn)fn1(bn)
满秩。

引理证明

f i ( x ) = ∑ k = 0 n − 1 a i k x i − k f_i(x)=\sum_{k=0}^{n-1}a_{ik}x^{i-k} fi(x)=k=0n1aikxik,其中, a i k ∈ K , a i 0 = a i a_{ik}\in K, a_{i0}=a_i aikK,ai0=ai i < k i<k i<k时, a i k = 0 a_{ik}=0 aik=0。规定 f i ( 0 ) = 0 f_i(0)=0 fi(0)=0
∣ f 0 ( b 1 ) f 0 ( b 2 ) ⋯ f 0 ( b n ) f 1 ( b 1 ) f 1 ( b 2 ) ⋯ f 1 ( b n ) ⋮ ⋮ ⋮ f n − 1 ( b 1 ) f n − 1 ( b 2 ) ⋯ f n − 1 ( b n ) ∣ = ∣ ∑ k 0 = 0 n − 1 a 0 k 0 b 1 0 − k 0 ∑ k 0 = 0 n − 1 a 0 k 0 b 2 0 − k 0 ⋯ ∑ k 0 = 0 n − 1 a 0 k 0 b n 0 − k 0 ∑ k 1 = 0 n − 1 a 1 k 1 b 1 1 − k 1 ∑ k 1 = 0 n − 1 a 1 k 1 b 2 1 − k 1 ⋯ ∑ k 1 = 0 n − 1 a 1 k 1 b n 1 − k 1 ⋮ ⋮ ⋮ ∑ k n − 1 = 0 n − 1 a n − 1 k n − 1 b 1 n − 1 − k n − 1 ∑ k n − 1 = 0 n − 1 a n − 1 k n − 1 b 2 n − 1 − k n − 1 ⋯ ∑ k n − 1 = 0 n − 1 a n − 1 k n − 1 b n n − 1 − k n − 1 ∣ = ∑ k 0 = 0 n − 1 ∑ k 1 = 0 n − 1 ⋯ ∑ k n − 1 = 0 n − 1 ∣ a 0 k 0 b 1 0 − k 0 a 0 k 0 b 2 0 − k 0 ⋯ a 0 k 0 b n 0 − k 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值