一个应用范德蒙行列式的例子

问题

在实数域上线性空间 C [ − π , π ] C[-\pi,\pi] C[π,π]内判断下列向量组是否线性相关,并求它的秩: 1 , s i n x , s i n 2 x , s i n 3 x , ⋯   , s i n n x 1,sinx,sin2x,sin3x,\cdots,sinnx 1,sinx,sin2x,sin3x,,sinnx

引理

f i ( x ) f_i(x) fi(x)是数域 K K K上的 i i i次多项式,其首项系数为 a i ( i = 0 , 1 , 2 , ⋯   , n − 1 ) a_i(i=0,1,2,\cdots,n-1) ai(i=0,1,2,,n1).又设 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn K K K内一组两两互不相同的数。则下列 n n n阶矩阵: [ f 0 ( b 1 ) f 0 ( b 2 ) ⋯ f 0 ( b n ) f 1 ( b 1 ) f 1 ( b 2 ) ⋯ f 1 ( b n ) ⋮ ⋮ ⋮ f n − 1 ( b 1 ) f n − 1 ( b 2 ) ⋯ f n − 1 ( b n ) ] \begin{bmatrix} f_0(b_1) & f_0(b_2) & \cdots & f_0(b_n) \\ f_1(b_1) & f_1(b_2) & \cdots & f_1(b_n) \\ \vdots & \vdots & & \vdots \\ f_{n-1}(b_1) & f_{n-1}(b_2) & \cdots & f_{n-1}(b_n) \\ \end{bmatrix} f0(b1)f1(b1)fn1(b1)f0(b2)f1(b2)fn1(b2)f0(bn)f1(bn)fn1(bn)
满秩。

引理证明

f i ( x ) = ∑ k = 0 n − 1 a i k x i − k f_i(x)=\sum_{k=0}^{n-1}a_{ik}x^{i-k} fi(x)=k=0n1aikxik,其中, a i k ∈ K , a i 0 = a i a_{ik}\in K, a_{i0}=a_i aikK,ai0=ai i < k i<k i<k时, a i k = 0 a_{ik}=0 aik=0。规定 f i ( 0 ) = 0 f_i(0)=0 fi(0)=0
∣ f 0 ( b 1 ) f 0 ( b 2 ) ⋯ f 0 ( b n ) f 1 ( b 1 ) f 1 ( b 2 ) ⋯ f 1 ( b n ) ⋮ ⋮ ⋮ f n − 1 ( b 1 ) f n − 1 ( b 2 ) ⋯ f n − 1 ( b n ) ∣ = ∣ ∑ k 0 = 0 n − 1 a 0 k 0 b 1 0 − k 0 ∑ k 0 = 0 n − 1 a 0 k 0 b 2 0 − k 0 ⋯ ∑ k 0 = 0 n − 1 a 0 k 0 b n 0 − k 0 ∑ k 1 = 0 n − 1 a 1 k 1 b 1 1 − k 1 ∑ k 1 = 0 n − 1 a 1 k 1 b 2 1 − k 1 ⋯ ∑ k 1 = 0 n − 1 a 1 k 1 b n 1 − k 1 ⋮ ⋮ ⋮ ∑ k n − 1 = 0 n − 1 a n − 1 k n − 1 b 1 n − 1 − k n − 1 ∑ k n − 1 = 0 n − 1 a n − 1 k n − 1 b 2 n − 1 − k n − 1 ⋯ ∑ k n − 1 = 0 n − 1 a n − 1 k n − 1 b n n − 1 − k n − 1 ∣ = ∑ k 0 = 0 n − 1 ∑ k 1 = 0 n − 1 ⋯ ∑ k n − 1 = 0 n − 1 ∣ a 0 k 0 b 1 0 − k 0 a 0 k 0 b 2 0 − k 0 ⋯ a 0 k 0 b n 0 − k 0 a 1 k 1 b 1 1 − k 1 a 1 k 1 b 2 1 − k 1 ⋯ a 1 k 1 b n 1 − k 1 ⋮ ⋮ ⋮ a n − 1 k n − 1 b 1 n − 1 − k n − 1 a n − 1 k n − 1 b 2 n − 1 − k n − 1 ⋯ a n − 1 k n − 1 b n n − 1 − k n − 1 ∣ = ∣ a 0 a 0 ⋯ a 0 a 1 b 1 a 1 b 2 ⋯ a 1 b n a 2 b 1 2 a 2 b 2 2 ⋯ a 2 b n 2 ⋮ ⋮ ⋮ a n − 1 b 1 n − 1 a n − 1 b 2 n − 1 ⋯ a n − 1 b n n − 1 ∣ = ∏ i = 0 n − 1 a i ∣ 1 1 ⋯ 1 b 1 b 2 ⋯ b n b 1 2 b 2 2 ⋯ b n 2 ⋮ ⋮ ⋮ b 1 n − 1 b 2 n − 1 ⋯ b n n − 1 ∣ = ∏ i = 0 n − 1 a i ∏ 1 ≤ j < k ≤ n ( b k − b j ) \begin{vmatrix} f_0(b_1) & f_0(b_2) & \cdots & f_0(b_n) \\ f_1(b_1) & f_1(b_2) & \cdots & f_1(b_n) \\ \vdots & \vdots & & \vdots \\ f_{n-1}(b_1) & f_{n-1}(b_2) & \cdots & f_{n-1}(b_n) \\ \end{vmatrix}\\ =\begin{vmatrix} \sum_{k_0=0}^{n-1}a_{0k_0}b_1^{0-k_0} & \sum_{k_0=0}^{n-1}a_{0k_0}b_2^{0-k_0} & \cdots & \sum_{k_0=0}^{n-1}a_{0k_0}b_n^{0-k_0} \\ \sum_{k_1=0}^{n-1}a_{1k_1}b_1^{1-k_1} & \sum_{k_1=0}^{n-1}a_{1k_1}b_2^{1-k_1}& \cdots &\sum_{k_1=0}^{n-1}a_{1k_1}b_n^{1-k_1} \\ \vdots & \vdots & & \vdots \\ \sum_{k_{n-1}=0}^{n-1}a_{n-1k_{n-1}}b_1^{n-1-k_{n-1}} & \sum_{k_{n-1}=0}^{n-1}a_{n-1k_{n-1}}b_2^{n-1-k_{n-1}} & \cdots & \sum_{k_{n-1}=0}^{n-1}a_{n-1k_{n-1}}b_n^{n-1-k_{n-1}} \\ \end{vmatrix}\\ =\sum_{k_0=0}^{n-1}\sum_{k_1=0}^{n-1}\cdots\sum_{k_{n-1}=0}^{n-1}\begin{vmatrix} a_{0k_0}b_1^{0-k_0} & a_{0k_0}b_2^{0-k_0} & \cdots & a_{0k_0}b_n^{0-k_0} \\ a_{1k_1}b_1^{1-k_1} &a_{1k_1}b_2^{1-k_1}& \cdots &a_{1k_1}b_n^{1-k_1} \\ \vdots & \vdots & & \vdots \\ a_{n-1k_{n-1}}b_1^{n-1-k_{n-1}} &a_{n-1k_{n-1}}b_2^{n-1-k_{n-1}} & \cdots & a_{n-1k_{n-1}}b_n^{n-1-k_{n-1}} \\ \end{vmatrix}\\ =\begin{vmatrix} a_0 & a_0 & \cdots & a_0\\ a_1b_1 & a_1b_2 & \cdots & a_1b_n\\ a_2b_1^2 & a_2b_2^2 & \cdots & a_2b_n^2\\ \vdots & \vdots & & \vdots\\ a_{n-1}b_1^{n-1} & a_{n-1}b_2^{n-1} & \cdots & a_{n-1}b_n^{n-1} \end{vmatrix}\\ =\prod_{i=0}^{n-1}a_i\begin{vmatrix} 1 & 1 & \cdots & 1\\ b_1 & b_2 & \cdots & b_n\\ b_1^2 & b_2^2 & \cdots & b_n^2\\ \vdots & \vdots & & \vdots\\ b_1^{n-1} & b_2^{n-1} & \cdots & b_n^{n-1} \end{vmatrix}\\ =\prod_{i=0}^{n-1}a_i\prod_{1\le j\lt k\le n}(b_k-b_j) f0(b1)f1(b1)fn1(b1)f0(b2)f1(b2)fn1(b2)f0(bn)f1(bn)fn1(bn)=k0=0n1a0k0b10k0k1=0n1a1k1b11k1kn1=0n1an1kn1b1n1kn1k0=0n1a0k0b20k0k1=0n1a1k1b21k1kn1=0n1an1kn1b2n1kn1k0=0n1a0k0bn0k0k1=0n1a1k1bn1k1kn1=0n1an1kn1bnn1kn1=k0=0n1k1=0n1kn1=0n1a0k0b10k0a1k1b11k1an1kn1b1n1kn1a0k0b20k0a1k1b21k1an1kn1b2n1kn1a0k0bn0k0a1k1bn1k1an1kn1bnn1kn1=a0a1b1a2b12an1b1n1a0a1b2a2b22an1b2n1a0a1bna2bn2an1bnn1=i=0n1ai1b1b12b1n11b2b22b2n11bnbn2bnn1=i=0n1ai1j<kn(bkbj)
由题 a i a_i ai为多项式的首项系数,故不为零。又 b j ≠ b k b_j\neq b_k bj=bk,所以上式不为0,引理得证。

上述证明用到了行列式的行线性。在对每一行根据多项式的不同次项分拆行列式时,如果该行留下的不是最高次项,不妨记该行为第i行,那么该行列式的前i行中最多有(i-1)个不同次项,即必有两行留下了相同次项,将这两行的系数提出后会得到相同的两行,即该拆分后的行列式为0.

解答

判断实数域上线性空间中向量组是否线性相关,即判断是否存在一组不全为零的实数 k 0 , k 1 , k 2 , ⋯   , k n k_0,k_1,k_2,\cdots,k_n k0,k1,k2,,kn,满足 k 0 + ∑ i = 1 n k i s i n i x = 0 k_0 + \sum_{i=1}^{n}k_isinix=0 k0+i=1nkisinix=0,记为(1)式,该式对 ∀ x ∈ [ − π , π ] \forall x\in[-\pi,\pi] x[π,π]都成立。

将x=0代入即得 k 0 = 0 k_0=0 k0=0。于是只要判断对 ∀ x ∈ [ − π , π ] \forall x\in[-\pi,\pi] x[π,π],是否存在一组不全为零的实数 k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn,满足 ∑ i = 1 n k i s i n i x = 0 \sum_{i=1}^{n}k_isinix=0 i=1nkisinix=0

不难找到 [ − π , π ] [-\pi,\pi] [π,π]上(n+1)个数 x 1 , x 2 , ⋯   , x n + 1 x_1,x_2,\cdots,x_{n+1} x1,x2,,xn+1,使得 i ≠ j ( i , j = 1 , 2 , ⋯   , n + 1 ) i\neq j(i,j=1,2,\cdots,n+1) i=ji,j=1,2,,n+1)时, s i n x i ≠ s i n x j sinx_i\neq sinx_j sinxi=sinxj

将上述(n+1)个数分别代入(1)式,即得一个实数域上由(n+1)个方程组成的(n+1)元线性齐次方程组, k 1 , k 2 , ⋯   , k n + 1 k_1,k_2,\cdots,k_{n+1} k1,k2,,kn+1为其变元。该方程组的系数矩阵为 A = [ 1 s i n x 1 s i n 2 x 1 ⋯ s i n n x 1 1 s i n x 2 s i n 2 x 2 ⋯ s i n n x 2 ⋮ ⋮ ⋮ ⋮ 1 s i n x n + 1 s i n 2 x n + 1 ⋯ s i n n x n + 1 ] A=\begin{bmatrix} 1 & sinx_1 & sin2x_1 & \cdots & sinnx_1\\ 1 & sinx_2 & sin2x_2 & \cdots & sinnx_2\\ \vdots & \vdots & \vdots & & \vdots\\ 1 & sinx_{n+1} & sin2x_{n+1}& \cdots & sinnx_{n+1}\\ \end{bmatrix} A=111sinx1sinx2sinxn+1sin2x1sin2x2sin2xn+1sinnx1sinnx2sinnxn+1由于上述线性齐次方程组有非零解等价于矩阵A不满秩,从而问题转变为研究矩阵A是否满秩。

注意到 s i n n x = ( c o s x + i s i n x ) n − ( c o s x − i s i n x ) n 2 i = ∑ k = 0 n ( c o s x ) n − k [ ( i s i n x ) k − ( − i s i n x ) k ] 2 i = − i ∑ k = 0 2 ∤ k n ( c o s x ) n − k ( i s i n x ) k , sinnx=\frac {(cosx+isinx)^n-(cosx-isinx)^n}{2i}\\=\frac{\sum_{k=0}^n(cosx)^{n-k}[(isinx)^k-(-isinx)^k]}{2i}\\ =-i\sum_{\begin{array}{c} k=0\\ 2\not|k \end{array}}^n(cosx)^{n-k}(isinx)^k, sinnx=2i(cosx+isinx)n(cosxisinx)n=2ik=0n(cosx)nk[(isinx)k(isinx)k]=ik=02kn(cosx)nk(isinx)k,当n为奇数时, ( n − k ) (n-k) nk为偶数, ( c o s x ) n − k = [ 1 − ( s i n x ) 2 ] n − k 2 (cosx)^{n-k}=[1-(sinx)^2]^{\frac{n-k}2} (cosx)nk=[1(sinx)2]2nk,sinnx为复数域上关于sinx的n次多项式。
从而可令 f i ( x ) = s i n i x f_i(x)=sinix fi(x)=sinix,令 f 0 ( x ) = 1 f_0(x)=1 f0(x)=1,则 A ′ = [ f 0 ( x 1 ) f 0 ( x 2 ) ⋯ f 0 ( x n + 1 ) f 1 ( x 1 ) f 1 ( x 2 ) ⋯ f 1 ( x n + 1 ) ⋮ ⋮ ⋮ f n ( x 1 ) f n ( x 2 ) ⋯ f n ( x n + 1 ) ] , A'=\begin{bmatrix} f_0(x_1) & f_0(x_2) & \cdots & f_0(x_{n+1}) \\ f_1(x_1) & f_1(x_2) & \cdots & f_1(x_{n+1}) \\ \vdots & \vdots & & \vdots \\ f_n(x_1) & f_n(x_2) & \cdots & f_n(x_{n+1}) \\ \end{bmatrix}, A=f0(x1)f1(x1)fn(x1)f0(x2)f1(x2)fn(x2)f0(xn+1)f1(xn+1)fn(xn+1),A’表示A的转置。
由引理可知A满秩。
从而向量组 1 , s i n x , s i n 2 x , s i n 3 x , ⋯   , s i n n x 1,sinx,sin2x,sin3x,\cdots,sinnx 1,sinx,sin2x,sin3x,,sinnx线性无关。
当n为偶数时,(n+1)为奇数,向量组 1 , s i n x , s i n 2 x , s i n 3 x , ⋯   , s i n ( n + 1 ) x 1,sinx,sin2x,sin3x,\cdots,sin(n+1)x 1,sinx,sin2x,sin3x,,sin(n+1)x线性无关,从而向量组 1 , s i n x , s i n 2 x , s i n 3 x , ⋯   , s i n n x 1,sinx,sin2x,sin3x,\cdots,sinnx 1,sinx,sin2x,sin3x,,sinnx线性无关。
所以对任意正整数n,向量组 1 , s i n x , s i n 2 x , s i n 3 x , ⋯   , s i n n x 1,sinx,sin2x,sin3x,\cdots,sinnx 1,sinx,sin2x,sin3x,,sinnx线性无关。
该线性无关向量组包含(n+1)个向量,所以它的秩为(n+1)。

出处

本题出自蓝以中《高等代数简明教程》第二版上册第四章习题一第6题(5)。引理出自同一本书第三章习题一第27题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值