奇数阶反对称矩阵不满秩

命题

奇数阶反对称矩阵不满秩。

证明

设A为n阶反对称矩阵,n为奇数。
d e t ( A ) = d e t ( A ′ ) = d e t ( − A ) = ( − 1 ) n d e t ( A ) = − d e t ( A ) det(A)=det(A')=det(-A)=(-1)^ndet(A)=-det(A) det(A)=det(A)=det(A)=(1)ndet(A)=det(A),
上式中A’表示A的转置。
从而 d e t ( A ) = 0 det(A)=0 det(A)=0,即A不满秩。

出处

本题改编自蓝以中《高等代数简明教程》第二版上册第三章习题一第16题。

### 偶数反对矩阵的行列式值 对于偶数反对矩阵,其行列式的性质和计算方法具有一定的特殊性。由于奇数反对行列式的值恒为零[^2],因此讨论主要集中在偶数情况。 #### 特殊结构与性质 反对矩阵 \( A \) 的定义表明,如果 \( A \) 是一个 \( n \times n \) 反对矩阵,则满足条件: \[ a_{ij} = -a_{ji},\quad i,j=1,2,\ldots,n \] 特别地,在主对角线上有 \( a_{ii}=0 \),即所有对角元均为零。当 \( n \) 为偶数时,可以证明存在一组正交基使得该反对矩阵可表示为准对角形式,其中每个分块都是如下形状的小型子矩阵之一: ```plaintext [ 0 b ] [ -b 0 ] ``` 这种准对角化的特性有助于简化行列式的计算过程。 #### 行列式的计算方法 为了有效地计算偶数反对矩阵的行列式,通常采用以下几种策略: - **利用标准形变换**:通过一系列初等行/列操作将原矩阵转换成上述提到的标准形式——由多个二反交换子矩阵组成的准对角阵。此时可以直接得出整个矩阵的行列式等于这些二矩阵对应的行列式的乘积。 - **Pfaffian多项式法**:对于任意给定的一个\( 2n\times 2n\) 反对矩阵A,可以通过构建与其关联的 Pfaffian 多项式来间接获得行列式的值。具体来说, \[ D(A)=(-1)^{k}\text {pf}(A)^2 \] 这里 \( k=\frac{n(n-1)}{2} \), 而 pf(A) 作 A 的 Pfaffian 函数,它是一个关于矩阵元素的一次齐次函数,并且只存在于偶数维空间内。 综上所述,虽然直接应用传统方式可能较为复杂,但是借助于特定技巧如标准化处理或是引入辅助概念(比如 Pfaffians),能够更方便快捷地解决这类问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值