以准对角阵为零点构造多项式问题

以准对角阵为零点构造多项式问题

问题

给定数域Kn阶准对角矩阵 J = [ J 1 0 ⋯ 0 0 J 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ J s ] , J = \begin{bmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_s \end{bmatrix} , J=J1000J2000Js,其中 J i J_i Ji为如下 n i n_i ni阶方阵: J i = [ λ i 1 0 λ i 1 0 ⋱ ⋱ ⋱ 1 λ i ] n i × n i ( i = 1 , 2 , ⋯   , s ) . J_i = \begin{bmatrix} \lambda_i & 1 & \quad\large 0 & & \\ & \lambda_i & 1 & & \\ \quad\large 0 & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_i \\ \end{bmatrix}_{n_i \times n_i}\quad (i = 1,2,\cdots, s). Ji=λi01λi011λini×ni(i=1,2,,s).找出数域K上一个多项式 f ( x ) = x m + a 1 x m − 1 + ⋯ + a m ( a i ∈ K ) , f(x) = x^m+a_1x^{m-1}+\cdots+a_m\quad (a_i \in K), f(x)=xm+a1xm1++am(aiK),其中 m ≤ n m\le n mn,使 f ( J ) = 0 f(J)=0 f(J)=0.

f ( A ) = A m + a 1 A m − 1 + ⋯ + a m E       = [ f ( J 1 ) 0 ⋯ 0 0 f ( J 2 ) ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ f ( J s ) ] , f(A) = A^m + a_1A^{m-1} + \cdots + a_mE \\ \qquad\quad\;\;\,=\begin{bmatrix} f(J_1) & 0 & \cdots & 0 \\ 0 & f(J_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(J_s) \end{bmatrix} , f(A)=Am+a1Am1++amE=f(J1)000f(J2)000f(Js),注意到 J i n = [ λ i n n λ i n − 1 n ( n − 1 ) 2 λ i n − 2 λ i n n λ i n − 1 n ( n − 1 ) 2 λ i n − 2 ⋱ ⋱ ⋱ ⋱ ⋱ n ( n − 1 ) 2 λ i n − 2 ⋱ n λ i n − 1 λ i n ] n i × n i ( i = 1 , 2 , 3 , ⋯   , s ) . J_i^n=\begin{bmatrix} \lambda_i^n & n\lambda_i^{n-1} & \frac{n(n-1)}2\lambda_i^{n-2} & & & \\ & \lambda_i^n & n\lambda_i^{n-1} & \frac{n(n-1)}2\lambda_i^{n-2} & & \\ && \ddots & \ddots & \ddots & \\ &&&\ddots&\ddots& \frac{n(n-1)}2\lambda_i^{n-2}\\ &&&&\ddots & n\lambda_i^{n-1}\\ &&&&&\lambda_i^n\\ \end{bmatrix}_{n_i\times n_i}\quad (i=1,2,3,\cdots, s). Jin=λinnλin1λin2n(n1)λin2nλin12n(n1)λin22n(n1)λin2nλin1λinni×ni(i=1,2,3,,s).空白处元素为0。
从而 f ( J i ) = [ f ( λ i ) f ′ ( λ i ) f ′ ′ ( λ i ) f ( λ i ) f ′ ( λ i ) f ′ ′ ( λ i ) ⋱ ⋱ ⋱ ⋱ ⋱ f ′ ′ ( λ i ) ⋱ f ′ ( λ i ) f ( λ i ) ] n i × n i ( i = 1 , 2 , 3 , ⋯   , s ) . f(J_i)=\begin{bmatrix} f(\lambda_i) & f'(\lambda_i) & f''(\lambda_i) & & & \\ &f(\lambda_i) & f'(\lambda_i) & f''(\lambda_i) & & \\ && \ddots & \ddots & \ddots & \\ &&&\ddots&\ddots&f''(\lambda_i) \\ &&&&\ddots &f'(\lambda_i)\\ &&&&&f(\lambda_i)\\ \end{bmatrix}_{n_i\times n_i}\quad (i=1,2,3,\cdots, s). f(Ji)=f(λi)f(λi)f(λi)f(λi)f(λi)f(λi)f(λi)f(λi)f(λi)ni×ni(i=1,2,3,,s). 注意到当 n i = 2 n_i=2 ni=2时, f ( J i ) = [ f ( λ i ) f ′ ( λ i ) f ( λ i ) ] f(J_i)=\begin{bmatrix}f(\lambda_i) & f'(\lambda_i)\\ &f(\lambda_i)\end{bmatrix} f(Ji)=[f(λi)f(λi)f(λi)],不涉及 f ′ ′ f'' f; 当 n i = 1 n_i=1 ni=1时, f ( J i ) = [ f ( λ i ) ] f(J_i)=\begin{bmatrix}f(\lambda_i)\end{bmatrix} f(Ji)=[f(λi)],不涉及 f ′ f' f f ′ ′ f'' f.
从而 f ( J ) = 0    ⟺    f ( J i ) = 0 ( i = 1 , 2 , 3 , ⋯   , s )    ⟺    f ( λ i ) = 0 ∧ f ′ ( λ i ) = 0 ( n i ≥ 2 时 ) ∧ f ′ ′ ( λ i ) = 0 ( n i ≥ 3 时 ) ( i = 1 , 2 , 3 , ⋯   , s ) , f(J)=0\iff f(J_i)=0\quad(i=1,2,3,\cdots,s)\\\iff f(\lambda_i)=0\land f'(\lambda_i)=0(n_i\ge2时)\land f''(\lambda_i)=0(n_i\ge3时)\quad(i=1,2,3,\cdots,s), f(J)=0f(Ji)=0(i=1,2,3,,s)f(λi)=0f(λi)=0(ni2)f(λi)=0(ni3)(i=1,2,3,,s),即对 ∀ n i ≥ 3 , λ i \forall n_i\ge3, \lambda_i ni3,λi f , f ′ f,f' f,f f ′ ′ f'' f的零点;对 ∀ n i = 2 , λ i \forall n_i=2, \lambda_i ni=2,λi f f f f ′ f' f的零点;对 ∀ n i = 1 , λ i \forall n_i=1, \lambda_i ni=1,λi f f f的零点.
可由此构造多项式 f ( x ) = ∏ i = 1 s ( x − λ i ) m i , f(x)=\prod_{i=1}^s(x-\lambda_i)^{m_i}, f(x)=i=1s(xλi)mi其中 m i = { 1 , n i = 1 , 2 , n i = 2 , 3 , n i ≥ 3. m_i=\left\{ \begin{array}{c} 1,n_i=1,\\ 2,n_i=2,\\ 3,n_i\ge 3. \end{array} \right. mi=1,ni=1,2,ni=2,3,ni3.可以验证该多项式满足上述描述。
同时, m = ∑ i = 1 s m i ≤ ∑ i = 1 s n i = n m=\sum_{i=1}^sm_i\le\sum_{i=1}^sn_i=n m=i=1smii=1sni=n.
多项式系数由 λ i ( i = 1 , 2 , 3 , ⋯   , s ) \lambda_i (i=1,2,3,\cdots,s) λi(i=1,2,3,,s)通过四则运算得到,故仍属于数域 K K K.
从而该多项式满足题意。

出处

本题为蓝以中《高等代数简明教程》第二版上册第二章第六节第10题。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值