抽屉原理证明线性空间中存在向量在不同线性变换下的像不同

问题

设V为数域K上的有限维线性空间。 A 1 , A 2 , ⋯   , A k \pmb A_1,\pmb A_2,\cdots,\pmb A_k AAA1,AAA2,,AAAk是V内k个两两不同的线性变换。证明V内存在向量 α \alpha α,使 A 1 α , A 2 α , ⋯   , A k α \pmb A_1\alpha,\pmb A_2\alpha,\cdots,\pmb A_k\alpha AAA1α,AAA2α,,AAAkα两两不同。

引理

设M是数域K上有限维线性空间V的子空间,如果 M ≠ V M\neq V M=V,则M称为V的真子空间。V的有限个真子空间的并集不能填满V。

引理证明

考虑n维线性空间V的k个真子空间 M 1 , M 2 , ⋯   , M k M_1,M_2,\cdots,M_k M1,M2,,Mk,不妨设这些真子空间的维数均为n-1(维数低于n-1的真子空间均可看作n-1维真子空间的真子空间)。

可令 M i ( i = 1 , 2 , ⋯   , k ) M_i(i=1,2,\cdots,k) Mi(i=1,2,,k)具有如下性质: ∃ α ∈ M i , α ∉ ⋃ j = 1 i ≠ j k M j \exists \alpha \in M_i, \alpha \notin \bigcup_{\begin{array}{c} j=1\\ i\neq j \end{array}}^kM_j αMi,α/j=1i=jkMj(否则去掉 M i M_i Mi并不影响这k个真子空间的并集)。

取定 i , j , i ≠ j , i , j ∈ { 1 , 2 , ⋯   , k } , i,j,i\neq j,i,j\in\{1,2,\cdots,k\}, i,j,i=j,i,j{1,2,,k}, α ∈ M i , α ∉ ⋃ j = 1 i ≠ j k M j \alpha \in M_i, \alpha \notin \bigcup_{\begin{array}{c} j=1\\ i\neq j \end{array}}^kM_j αMi,α/j=1i=jkMj β ∈ M j , β ∉ ⋃ i = 1 i ≠ j k M i \beta \in M_j, \beta \notin \bigcup_{\begin{array}{c} i=1\\ i\neq j \end{array}}^kM_i βMj,β/i=1i=jkMi.

采用反证法。
考虑以下(k+1)个向量 α + β , α + 2 β , ⋯   , α + ( k + 1 ) β \alpha+\beta,\alpha+2\beta,\cdots,\alpha+(k+1)\beta α+β,α+2β,,α+(k+1)β,若 ⋃ m = 1 k M m \bigcup_{m=1}^kM_m m=1kMm填满V,则对 ∀ l ∈ { 1 , 2 , ⋯   , k } , ∃ p \forall l \in \{1,2,\cdots,k\},\exists p l{1,2,,k},p,满足 α + l β ∈ M p \alpha+l\beta \in M_p α+lβMp
根据抽屉原理,必有 s ≠ t , s , t , m ∈ { 1 , 2 , ⋯   , k } , α + s β ∈ M m , α + t β ∈ M m s\neq t, s,t,m \in \{1,2,\cdots,k\},\alpha+s\beta \in M_m,\alpha+t\beta \in M_m s=t,s,t,m{1,2,,k},α+sβMm,α+tβMm.
m = j m=j m=j,则 α = α + s β − s β ∈ M j \alpha=\alpha+s\beta-s\beta \in M_j α=α+sβsβMj,这与 α ∉ ⋃ j = 1 i ≠ j k M j \alpha \notin \bigcup_{\begin{array}{c} j=1\\ i\neq j \end{array}}^kM_j α/j=1i=jkMj矛盾。
m ≠ j m\neq j m=j, 则 β = 1 s − t [ ( α + s β ) − ( α + t β ) ] ∈ M m \beta=\frac 1{s-t} [(\alpha + s\beta)-(\alpha+t\beta)]\in M_m β=st1[(α+sβ)(α+tβ)]Mm,这与 β ∉ ⋃ i = 1 i ≠ j k M i \beta \notin \bigcup_{\begin{array}{c} i=1\\ i\neq j \end{array}}^kM_i β/i=1i=jkMi矛盾。
从而V的有限个真子空间的并集不能填满V。引理得证。

证明

取定V的一组基 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn,记线性变换 A i ( i = 1 , 2 , ⋯   , k ) \pmb A_i(i=1,2,\cdots,k) AAAi(i=1,2,,k)在这组基下的矩阵为 A i A_i Ai(为 n × n n\times n n×n矩阵)。

反证。
若对 ∀ α ∈ V \forall \alpha \in V αV, ∃ i , j ∈ { 1 , 2 , ⋯   , k } \exists i,j\in\{1,2,\cdots,k\} i,j{1,2,,k}, i ≠ j i\neq j i=j,满足 A i α = A j α \pmb A_i\alpha = \pmb A_j\alpha AAAiα=AAAjα,即 ( A i − A j ) α = 0 (A_i-A_j)\alpha=0 (AiAj)α=0.

将由V中所有满足 A i α = A j α \pmb A_i\alpha = \pmb A_j\alpha AAAiα=AAAjα的向量 α \alpha α组成的集合记作 V i j , i < j V_{ij},i<j Vij,i<j,则不难验证 V i j V_{ij} Vij为数域K上的线性空间。同时 V i j V_{ij} Vij为方程组 ( A i − A j ) α = 0 (A_i-A_j)\alpha=0 (AiAj)α=0的解空间。

由假设,对 ∀ α ∈ V \forall \alpha \in V αV, ∃ i , j ∈ { 1 , 2 , ⋯   , k } \exists i,j\in\{1,2,\cdots,k\} i,j{1,2,,k}, i ≠ j i\neq j i=j,满足 α ∈ V i j \alpha \in V_{ij} αVij.

若所有上述的 V i j V_{ij} Vij的维数均小于n,则由引理,所有上述的 V i j V_{ij} Vij的并集不能填满V,即 ∃ α ∈ V , α ∉ V i j \exists \alpha \in V, \alpha \notin V_{ij} αV,α/Vij,对 ∀ i < j , i , j = 1 , 2 , ⋯   , k \forall i<j,i,j=1,2,\cdots,k i<j,i,j=1,2,,k.这与假设矛盾。

从而必有一 V i j V_{ij} Vij维数为n.那么矩阵 ( A i − A j ) (A_i-A_j) (AiAj)的秩为0,从而 ( A i − A j ) (A_i-A_j) (AiAj)为零矩阵,即 A i = A j A_i=A_j Ai=Aj,从而 A i = A j \pmb A_i=\pmb A_j AAAi=AAAj,这与题目中的条件矛盾。
命题得证。

出处

本题出自蓝以中《高等代数简明教程》第二版上册第四章习题三第19题。
引理出自同一本书第四章习题二第8题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值