不等式约束的优化问题求解
与前文讨论的只含等式约束的优化问题求解类似,含不等式约束的优化问题同样可以用拉格朗日乘子法进行求解
对于一般形式的优化问题:
minimizef(x)subject toh(x)=0g(x)≤0minimizef(x)subject toh(x)=0g(x)≤0
其中, f:Rn→R,h:Rn→Rm,m≤n,g:Rn→Rpf:Rn→R,h:Rn→Rm,m≤n,g:Rn→Rp
引入下面两个定义:
定义1:对于一个不等式约束gj(x)≤0gj(x)≤0,如果在x∗x∗处gj(x∗)=0gj(x∗)=0,那么称该不等式约束是x∗x∗处的起作用约束;如果在x∗x∗处gj(x∗)<0gj(x∗)<0,那么称该约束是x∗x∗处的不起作用约束。按照惯例,总是把等式约束

本文介绍了含不等式约束的优化问题如何使用拉格朗日乘子法求解,并详细阐述了局部极小点的一阶KKT条件和二阶的充分必要条件,涉及二阶导数矩阵和梯度向量。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



