凸集的定义与常见凸集
通常认为,如果某个实际问题可以表述为凸优化问题,那么事实上已经解决了这个问题,然而凸优化问题的识别还比较困难,本文将先介绍凸集的定义与常见凸集。
仿射集
如果集合 C⊆Rn C ⊆ R n 是仿射的,等价于:对于任意的 x1,x2∈C x 1 , x 2 ∈ C 及 θ∈R θ ∈ R 有 θx1+(1−θ)x2∈C θ x 1 + ( 1 − θ ) x 2 ∈ C ,即 C C 包含了 中任意两点的系数之和为1的线性组合。
将其扩展到多个点的情况:如果 θ1+θ2+...+θk=1 θ 1 + θ 2 + . . . + θ k = 1 ,我们则称具有 θ1x1+θ2x2+...+θkxk θ 1 x 1 + θ 2 x 2 + . . . + θ k x k 形式的点为 x1,x2,...,xk x 1 , x 2 , . . . , x k 的仿射组合。例如线性方程组的解集 C={x|Ax=b} C = { x | A x = b } 是一个仿射集。
称由集合
C⊆Rn
C
⊆
R
n
中点的所有仿射组合所组成的集合为
C
C
的仿射包:
仿射包是包含 C C 的最小的仿射集合,即如果集合 满足 C⊆S C ⊆ S ,则 aff C⊆S a f f C ⊆ S ,同时将集合 C C 的仿射维数定义为其仿射包的维数。例如 上的单位圆环的维数为1,但其仿射维数为2,因为其仿射包为全空间 R2 R 2
凸集
如果集合 C C 为凸集,那么对于任意的 与 0≤θ≤1 0 ≤ θ ≤ 1 都有 θx1+(1−θ)x2∈C θ x 1 + ( 1 − θ ) x 2 ∈ C ,与仿射集的区别在于仿射集并没有 θ≥0 θ ≥ 0 的要求,例如一条线段是凸集,而一条直线是仿射集。
扩展到多维的情况,如果有 θ1+θ2+...+θk=1,θi≥0 θ 1 + θ 2 + . . . + θ k = 1 , θ i ≥ 0 ,则称具有 θ1x1+θ2x2+...+θkxk θ 1 x 1 + θ 2 x 2 + . . . + θ k x k 形式的点为 x1,x2,...,xk x 1 , x 2 , . . . , x k 的凸组合。
称由集合
C⊆Rn
C
⊆
R
n
中点的所有凸组合所组成的集合为
C
C
的凸包:
与仿射包同样,凸包也是包含 C C 的最小的凸集,在一般情况下,设 是凸集, x x 是随机变量,并且 的概率为1,那么 E x∈C E x ∈ C
一些重要的凸集
识别出凸集对于识别凸优化问题较为重要,这里将介绍一些比较重要的凸集。
任意的仿射集和子空间都是凸集,一些比较简单的例如空集 ∅ ∅ ,单点集 {x0 { x 0 ,全空间 Rn R n ,直线/射线/线段都是凸的。
还有一些比较重要的凸集如下:
- 超平面 {x|aTx=b { x | a T x = b 和半空间 {x|aTx≤b { x | a T x ≤ b
- Euclid球 B(xc,r)={x| ||x−xc||2≤r B ( x c , r ) = { x | | | x − x c | | 2 ≤ r
- 椭球 ξ={x|(x−xc)TP−1(x−xc)≤1 ξ = { x | ( x − x c ) T P − 1 ( x − x c ) ≤ 1
- 范数球 {x| ||x−xc||≤r { x | | | x − x c | | ≤ r ,其中 ||⋅|| | | ⋅ | | 是 Rn R n 中的范数
- 范数锥 C={(x,t)| ||x||≤t⊆Rn+1 C = { ( x , t ) | | | x | | ≤ t ⊆ R n + 1
- 多面体 P={x|aTj≤bj,j=1,...,m,cTjx=dj,j=1,...,p P = { x | a j T ≤ b j , j = 1 , . . . , m , c j T x = d j , j = 1 , . . . , p ,即为有限个半空间和超平面的交集,单纯形也为凸集,是一种特殊的多面体
- 半正定锥 Sn+={X∈Rn∗n|X=XT,X⪰0 S + n = { X ∈ R n ∗ n | X = X T , X ⪰ 0 ,即为半正定对称矩阵的集合