[机器学习]SVM的推导(3)

软间隔SVM的推导

前文介绍了硬间隔SVM的相关推导,本文将继续介绍软间隔SVM的数学推导,即在样本不是线性可分的情况下,允许一部分样本错误分类的SVM。软间隔SVM允许一部分样本不满足约束: yi(wxi)0 y i ( w ⋅ x i ) ≥ 0

可以将优化目标写为:

minw,b12||w||2+Ci=1mloss(yi(wxi+b)1) m i n w , b 1 2 | | w | | 2 + C ∑ i = 1 m l o s s ( y i ( w ⋅ x i + b ) − 1 )

其中 C C 是一个常数,用来衡量允许的不满足约束的程度,其中的 loss() 函数可以使用 hinge() h i n g e ( ) 函数,即 losshinge(z)=max(0,1z) l o s s h i n g e ( z ) = m a x ( 0 , 1 − z )

那么可以将优化目标写为:

minw,b12||w||2+Ci=1mmax(0,1yi(wxi+b)) m i n w , b 1 2 | | w | | 2 + C ∑ i = 1 m m a x ( 0 , 1 − y i ( w ⋅ x i + b ) )

引入“松弛变量” ξi0 ξ i ≥ 0 ,可以将上式改写为

minw,b,ξis.t.12||w||2+Ci=1mξiyi(wxi+b)1ξiξi0,i=1,2,...,m m i n w , b , ξ i 1 2 | | w | | 2 + C ∑ i = 1 m ξ i s . t . y i ( w ⋅ x i + b ) ≥ 1 − ξ i ξ i ≥ 0 , i = 1 , 2 , . . . , m

与硬间隔SVM类似,上述的问题也是个二次规划的问题,可以先用拉格朗日对偶性将其转换为对应的对偶问题,再用SMO算法求解。上面问题对应的拉格朗日函数为:

L(w,b,α,ξ,μ)=12||w||2+Ci=1mξi+i=1mαi(1ξiyi(wxi+b))i=1mμiξi L ( w , b , α , ξ , μ ) = 1 2 | | w | | 2 + C ∑ i = 1 m ξ i + ∑ i = 1 m α i ( 1 − ξ i − y i ( w ⋅ x i + b ) ) − ∑ i = 1 m μ i ξ i

L L w,b,α 的偏导为 0 0 可以得到

w=i=1mαiyixi0=i=1mαiyiC=αi+μi

代入 L(w,b,α,ξ,μ) L ( w , b , α , ξ , μ ) 即可以将原问题化成对偶问题:

minαs.t.12i=1mj=1mαiαjyiyjxixji=1mαii=1mαiyi=0Cαi0i=1,2,...,m m i n α 1 2 ∑ i = 1 m ∑ j = 1 m α i α j y i y j x i ⋅ x j − ∑ i = 1 m α i s . t . ∑ i = 1 m α i y i = 0 C ≥ α i ≥ 0 i = 1 , 2 , . . . , m

可以看出其与硬间隔SVM唯一的区别在于 αi0 α i ≥ 0 变成了 Cαi0 C ≥ α i ≥ 0 ,同样可以用上文中提到的SMO算法很方便的求解,唯一的区别在于剪辑的时候需要考虑两个方向。

后面还会介绍SVM的核技巧以及常用核,To be continue…

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值