【数学】微分(Differential)的定义,微分与导数的区别

本文会详细的定义微分,并结合导数的概念,详细的说明二者的差别。

如上图所示,对于函数y=f(x)来说,在任意一点p(x, y)上,若x方向上有增量\Delta x,则在y的方向上有增量\Delta y,当\Delta x \to 0时,导数的定义为 

{y}'={f(x)}'=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}

可见导数关心的是当x发生变化时,y发生变化这二者之间的比率。而微分的定义为当x发生微小变化dx时,在y方向上发生的微小变化dy,由导数公式我们来看

{f(x)}'=\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x},则可以有\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}-f'(x)=0 则有 \frac{\Delta y}{\Delta x}-f'(x)=a\lim_{\Delta x\to 0}a = 0

则最终有:\Delta y = f'(x_{0})\Delta x + o(\Delta x)   (式一)

其中o(\Delta x)\Delta x的高阶无穷小,含义为当\Delta xx_{0}处向0收敛时,则o(\Delta x)更快的向0收敛,由此y方向上的变化率\Delta y表现为与\Delta x的线性关系。则可以看出f'(x)是f(x)在x_{0}处的导数,是个不依赖\Delta x的固定值,当满足(式一)时,我们称y=f(x)在x_{0}处是可微的,而dy=f'(x_{0})\Delta x称为y=f(x)在x_{0}处的微分。

而x方向上的变化率dx=\Delta x则 dy=f'(x_{0})dx就是基本的微分公式。相对比式一,我们相差了o(\Delta x),也即微分是个近似值。我们来看y=x^{2}这个函数的微分:

\Delta y=\lim_{\Delta x \to 0}(f(x+\Delta x)-f(x)) =\lim_{\Delta x \to 0}(x^{2}+2x\Delta x+\Delta x^{2}-x^{2}) =\lim_{\Delta x \to 0}(2x\Delta x+\Delta x^{2})

其中我们可以看到有个2x就是导数,而\Delta x^{2}就是\Delta x的高阶无穷小。

左右有极限、可微、可导是相互成立的,因此

dy=f'(x_{0})dx

就是著名的微分公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值