在机器学习的过程中,我们一般假设数据是由浮点数组成的二维数组,每一列描述数据点的连续特征(continuous feature)。但真实情况下,数据并不一定按照这种方式收集。
一种常见的特征类型是分类特征(categorical feature),也叫离散特征(discrete feature)。通常这种特征并不是数值。
分类特征与连续特征之间的区别类似于分类和回归的区别,只是前者在输入端而不是输出端。已经见过的连续特征的例子包括图像像素明暗程度和鸢尾花的尺寸测量。分类特征的例子包括某种产品的品牌、颜色或销售部门(图书、服装、硬件)。这些都是描述一件产品的属性,它们不以连续的方式变化。一件产品要么属于服装部门,要么属于图书部门。在图书和服装之间没有中间部门,不同的分类之间也没有顺序(图书不大于服装也不小于服装,硬件不在图书和服装之间,等等)。
无论数据包含哪种类型的特征,数据表示方式都会对机器学习模型的性能产生巨大影响。数据缩放非常重要,换句话说,如果没有缩放数据,那么用厘米还是英寸表示测量数据的结果将会不同。另外用额外的特征扩充(augment)数据也很有用,比如添加特征的交互项(乘积)