OpenCV-Python快速入门(十四):模板匹配

前言

  • 本文是个人快速入门OpenCV-Python的电子笔记,由于水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入
    OpenCV-Python快速入门
    专栏或我的个人主页查看

前提条件

实验环境

  • Python 3.x (面向对象的高级语言)
  • OpenCV 4.0(python第三方库)pip3 install opencv-python

模板匹配(cv2.matchTemplate())

  • 模板匹配是指在当前图像 A 内寻找与图像 B 最相似的部分,一般将图像 A 称为输入图像,
    将图像 B 称为模板图像。模板匹配的操作方法是将模板图像 B 在图像 A 上滑动,遍历所有像
    素以完成匹配。
    在这里插入图片描述
  • 在 OpenCV 内,模板匹配是使用函数 cv2.matchTemplate()实现的。该函数的语法格式为::
    • result = cv2.matchTemplate(image, templ, method[, mask ] )
  • image 为原始图像,必须是 8 位或者 32 位的浮点型图像。
  • templ 为模板图像。它的尺寸必须小于或等于原始图像,并且与原始图像具有同样的类型。
  • method 为匹配方法。该参数通过 TemplateMatchModes 实现,有 6 种可能的值,如下表所示。
    在这里插入图片描述
    在这里插入图片描述
  • mask 为模板图像掩模。它必须和模板图像 templ 具有相同的类型和大小。通常情况下,该值使用默认值即可。当前,该参数仅支持 TM_SQDIFF 和 TM_CCORR_NORMED 两个值。
  • 函数 cv2.matchTemplate()的返回值 result 是由每个位置的比较结果组合所构成的一个结果集,类型是单通道 32 位浮点型。如果输入图像(原始图像)尺寸是 W ∗ H W*H WH,模板的尺寸是 w ∗ h w*h wh,则返回值的大小为 ( W − w + 1 ) ∗ ( H − h + 1 ) (W-w+1)*(H-h+1) (Ww+1)(Hh+1)
  • 在进行模板匹配时,模板在原始图像内遍历。
    • 在水平方向上:
      • 遍历的起始坐标是原始图像左数第 1 个像素值(序号从 1 开始)。
      • 最后一次比较是当模板图像位于原始图像的最右侧时,此时其左上角像素点所在的位置是 W − w + 1 W-w+1 Ww+1
      • 因此,返回值 result 在水平方向上的大小是 W − w + 1 W-w+1 Ww+1(水平方向上的比较次数)。
    • 在垂直方向上:
      • 遍历的起始坐标从原始图像顶端的第 1 个像素开始。
      • 最后一次比较是当模板图像位于原始图像的最下端时,此时其左上角像素点所在位置是 H − h + 1 H-h+1 Hh+1
      • 所以,返回值 result 在垂直方向上的大小是 H − h + 1 H-h+1 Hh+1(垂直方向上的比较次数)。
      • 如果原始图像尺寸是 W*H,模板的尺寸是 w ∗ h w*h wh,则返回值的大小为 ( W − w + 1 ) ∗ ( H − h + 1 ) (W-w+1)*(H-h+1) (Ww+1)(Hh+1)。也
        就是说,模板图像要在输入图像内比较 ( W − w + 1 ) ∗ ( H − h + 1 ) (W-w+1)*(H-h+1) (Ww+1)(Hh+1)次。
  • 注意函数 cv2.matchTemplate()通过参数 method 来决定使用不同的查找方法。对于不同的查找方法,返回值 result 具有不同的含义。例如:
    • method 的值为 cv2.TM_SQDIFF 和 cv2.TM_SQDIFF_NORMED 时,result 值为 0 表示匹配度最好,值越大,表示匹配度越差。
    • method 的值为 cv2.TM_CCORR、cv2.TM_CCORR_NORMED、cv2.TM_CCOEFF 和
      cv2.TM_CCOEFF_NORMED 时,result 的值越小表示匹配度越差,值越大表示匹配度越好。
  • 从上述分析可以看出,查找方法不同,结果的判定方式也不同。在查找最佳匹配时,首先要确定使用的是何种 method,然后再确定到底是查找最大值,还是查找最小值。
  • 查找最值(极值)与最值所在的位置,可以使用 cv2.minMaxLoc()函数实现。该函数语法格式如下:
    • minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc( src [, mask] )
  • src 为单通道数组。
  • minVal 为返回的最小值,如果没有最小值,则可以是 NULL(空值)。
  • maxVal 为返回的最大值,如果没有最小值,则可以是 NULL。
  • minLoc 为最大值的位置,如果没有最大值,则可以是 NULL。
  • maxLoc 为最大值的位置,如果没有最大值,则可以是 NULL。
  • mask 为用来选取掩模的子集,可选项。
  • 函数 cv2.minMaxLoc()能够查找整个数组内的最值及它们的位置,并且可以根据当前的掩模集来选取特定子集的极值。
  • 综上所述,函数 cv2.matchTemplate()返回值中的最值位置就是模板匹配的位置。
    函数cv2.minMaxLoc()来查找函数 cv2.matchTemplate()返回值中的最值位置,就可以找到最佳模板匹配的位置。

匹配单个结果

import cv2
import numpy as np
from matplotlib import pyplot as plt
# 读取原始图片
img = cv2.imread('cat.jpg',0)
# 读取模板图片
template = cv2.imread('temp.jpg',0)

# 显示图片
plt.figure(figsize=(20, 20))
plt.subplot(221),plt.imshow(template,cmap = 'gray')
plt.title('Template Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(img,cmap = 'gray')
plt.title('Origin Image'), plt.xticks([]), plt.yticks([])

# 获取模板图片的高和宽
th, tw = template.shape[::]
# rv是由每个位置的比较结果组合所构成的一个结果集,类型是单通道 32 位浮点型。
rv = cv2.matchTemplate(img,template,cv2.TM_SQDIFF)
# 查找最值(极值)与最值所在的位置
minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)
# 左上角位置坐标
topLeft = minLoc 
# 右下角位置坐标
bottomRight = (topLeft[0] + tw, topLeft[1] + th) 
# 绘制矩形
cv2.rectangle(img,topLeft, bottomRight, 255, 5)
# 显示图片
plt.subplot(223),plt.imshow(rv,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(224),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

import cv2
import numpy as np
from matplotlib import pyplot as plt
# 读取原始图片
img = cv2.imread('cat.jpg')
# BGR -> RGB
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
# 读取模板图片
template = cv2.imread('temp.jpg')
# BGR -> RGB
template = cv2.cvtColor(template,cv2.COLOR_BGR2RGB)

# 显示图片
plt.figure(figsize=(20, 20))
plt.subplot(221),plt.imshow(template)
plt.title('Template Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(img)
plt.title('Origin Image'), plt.xticks([]), plt.yticks([])

# 获取模板图片的高和宽
th, tw = template.shape[0],template.shape[1]
# rv是由每个位置的比较结果组合所构成的一个结果集,类型是单通道 32 位浮点型。
rv = cv2.matchTemplate(img,template,cv2.TM_SQDIFF)
# 查找最值(极值)与最值所在的位置
minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)
# 左上角位置坐标
topLeft = minLoc
# 右下角角位置坐标
bottomRight = (topLeft[0] + tw, topLeft[1] + th)
# 绘制矩形
cv2.rectangle(img,topLeft, bottomRight, (255,255,255), 5)
# 显示图片
plt.subplot(223),plt.imshow(rv)
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(224),plt.imshow(img)
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

匹配多个结果

import cv2
import numpy as np
from matplotlib import pyplot as plt
# 读取原始图片
img = cv2.imread('geese.jpg',0)
# BGR -> RGB
img_BGR = cv2.imread('geese.jpg')
img_RGB = cv2.cvtColor(img_BGR,cv2.COLOR_BGR2RGB)
# 读取模板图片
template = cv2.imread('goose.jpg',0)
# BGR -> RGB
template_BGR = cv2.imread('goose.jpg')
template_RGB = cv2.cvtColor(template_BGR,cv2.COLOR_BGR2RGB)

# 显示图片
plt.figure(figsize=(20, 20))
plt.subplot(221),plt.imshow(template_RGB)
plt.title('Template Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(img_RGB)
plt.title('Origin Image'), plt.xticks([]), plt.yticks([])

# 获取模板图片的高和宽
w, h = template.shape[::-1]
# res是由每个位置的比较结果组合所构成的一个结果集,类型是单通道 32 位浮点型。
res = cv2.matchTemplate(img,template,cv2.TM_CCOEFF_NORMED)
# 阈值
threshold = 0.9
# 位置结果集
loc = np.where(res >= threshold) # 将大于threshold的结果位置,保存下来
# 遍历位置结果,绘制矩形
for pt in zip(*loc[::-1]): 
    cv2.rectangle(img_RGB, pt, (pt[0] + w, pt[1] + h), (255,255,255), 1)

# 显示图片
plt.subplot(223),plt.imshow(res)
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(224),plt.imshow(img_RGB)
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

参考文献

[1] https://opencv.org/
[2] 李立宗. OpenCV轻松入门:面向Python. 北京: 电子工业出版社,2019

  • 4
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: LabVIEW是一种用于数据采集、处理和显示的编程环境,具有直观的图形化编程界面和丰富的功能模块。在LabVIEW中,模板匹配是一种常见的图像处理技术,用于在图像中查找特定的模式或对象。 模板匹配的基本思想是将一个事先定义好的模板与待匹配的图像进行比较,找到最佳匹配的位置。在LabVIEW中,可以使用模板匹配工具箱中的函数实现这一过程。首先,将模板图像和待匹配图像导入到LabVIEW中,并对其进行预处理,如裁剪、滤波等。然后,使用模板匹配函数将模板与待匹配图像进行比较,并得到匹配结果。 LabVIEW中的模板匹配函数可以使用不同的匹配方法,如相关性匹配、平方差匹配、归一化相关性匹配等。这些方法根据需要选择合适的匹配指标,通过计算模板与图像的相似度来确定最佳匹配位置。匹配结果通常以坐标形式返回,表示模板在图像中的位置。 模板匹配在许多领域中都有广泛的应用,如机器视觉、模式识别和人脸识别等。在实际应用中,我们可以根据具体需求对模板匹配进行优化和改进,以提高匹配的准确度和效率。 总结起来,LabVIEW中的模板匹配是一种基于图像处理的技术,用于在图像中查找特定的模式或对象。通过使用LabVIEW中的模板匹配工具箱,我们可以方便地实现模板匹配算法,并根据实际需求进行参数调节和优化。这一技术在许多领域都有广泛的应用。 ### 回答2: LabVIEW模板匹配是一种用于在图像处理中找出匹配目标的算法。模板匹配方法通过比较一个称为模板的图像与另一个较大的图像进行比较,以寻找最佳匹配的位置。 在LabVIEW中,模板匹配通常通过以下步骤实现: 1. 准备图像数据:将需要进行模板匹配的大图像和模板图像加载到LabVIEW中,并进行预处理操作,如调整大小、去噪等。 2. 创建模板匹配VI:在LabVIEW中创建一个VI(Virtual Instrument),将图像数据输入到VI中。在VI中使用“模板匹配”节点,选择适当的模板匹配算法和参数,如标准相关匹配(Normalized Cross-correlation)或平方差匹配(Sum of Squared Differences)。 3. 执行模板匹配:运行VI,将待匹配的图像和模板传递给模板匹配节点。模板匹配节点将计算出每个像素的匹配度,通过比较像素值或特征来确定匹配度。匹配度最高的像素位置即为最佳匹配位置。 4. 输出结果:将匹配结果输出到图像或显示窗口中,以便用户可视化检查。可以使用图像处理节点在匹配结果图像中绘制边界框或其他标记,以突出显示匹配目标。 LabVIEW模板匹配可广泛应用于计算机视觉相关领域,如目标检测、OCR(Optical Character Recognition)等。通过LabVIEW的图形化编程界面和强大的图像处理功能,可以方便地实现模板匹配算法,准确地找出匹配目标并进行进一步的处理分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FriendshipT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值