YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层

本文详细解读了YOLOv5s.yaml配置文件,解释了模型深度和宽度的控制参数,并介绍了如何在YOLOv5s.yaml中增加小目标检测层,以提高对小型物体的检测能力。此外,文章还提到了相关技术如Python、PyTorch和YOLO系列算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层

前言

前提条件

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。

yolov5s.yaml解读

在这里插入图片描述

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 - nc: 8 代表数据集中的类别数目。
 - depth_multiple: 0.33
 	- 用来控制模型的深度,仅在number≠1时启用。
 	- 如第一个C3层的参数设置为[-1, 3, C3, [128]],其中number=3,表示在yolov5s中含有 3 × 0.331个C3。
 - width_multiple: 0.50
 	- 用来控制模型的宽度,主要作用于args中的channel_out。
 	- 如第一个Conv层,输出通道数channel_out=64,那么在yolov5s中,会将卷积过程中的卷积核设置为 64 × 0.50 = 32,所以会输出 32 通道的特征图。
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
 - from 
 	- -n 代表是从前n层获得的输入,如-1表示从前一层获得输入。
 - number
 	- 表示网络模块的数目,如[-1, 3, C3, [128]]表示含有3个C3模块。
 - model
 	- 表示网络模块的名称,具体细节可以在./models/common.py查看,如 Conv、C3、SPPF、Concat都是已经在common.py文件中定义好的模块。
 - args:
 	- 表示向不同模块内传递的参数,即[channel_out, kernel, stride, padding, groups],如[64, 6, 2, 2]表示channel_out=64,kernel=6,stride=2,padding=2。
 	- args里没有输入通道数channel_in,是因为初始输入channel_in的获取是从./models/yolo.py的parse_model(md, ch)函数中解析得到的,一般初始channel_in=3,其他层输入channel_in都是上层的输出channel_out。

yolov5s.yaml增加小目标检测层

在这里插入图片描述

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

anchors:
  - [5,6, 8,14, 15,11]  #4
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
 
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [512, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 1, 1]], #18  80*80
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #19  160*160
   [[-1, 2], 1, Concat, [1]], #20 cat backbone p2  160*160
   [-1, 3, C3, [256, False]], #21 160*160
   
   [-1, 1, Conv, [256, 3, 2]],  #22   80*80
   [[-1, 18], 1, Concat, [1]], #23 80*80
   [-1, 3, C3, [256, False]], #24 80*80
 
 
   [-1, 1, Conv, [256, 3, 2]], #25
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 27 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]], 
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 30 (P5/32-large)
 
   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(p2, P3, P4, P5)
]

参考

[1] https://github.com/ultralytics/yolov5

<think>嗯,用户想了解如何改进YOLOv5s模型的最佳实践和优化方法。我需要先回顾一下YOLOv5的结构,然后整理常见的改进策略。首先,YOLOv5s是YOLO系列中较小的模型,适合移动端和边缘设备,但可能在精度和速度上有提升空间。 改进方法通常包括网络结构优化、注意力机制、损失函数改进等。比如BiFPN模块,可以提升特征融合的效率,用户提到的引用[1]里就有BiFPN的实现步骤,可能需要详细说明代码修改的地方,比如common.py添加模块,yolo.py调整调用,还有配置文件的修改。 另外,注意力机制如SE、CBAM、ECA模块也是常见的改进点,可以增强模型对重要特征的关注。替换激活函数,比如用Mish或SiLU,可能提升非线性表达能力。轻量化方面,GhostNet或MobileNet的结构可以减少参数量,适合部署在资源有限的设备上。 数据增强策略也很重要,比如Mosaic、MixUp、Copy-Paste等,可以增加数据多样性。自适应锚框计算和损失函数优化,如CIoU替换原有的IoU,可能提高检测精度和收敛速度。 模型剪枝和量化是后续的优化步骤,能减少模型大小和提升推理速度。知识蒸馏结合教师-学生网络也是一个方向,但可能需要更多的训练资源。 用户可能想知道哪些改进最有效,可能需要推荐一个组合方案,比如同时使用BiFPN、注意力模块和CIoU损失。还要注意实验对比,通过消融实验验证每个改进的效果,避免相互冲突。 需要确保回答的结构清晰,分点说明每个改进方法,并给出具体的代码示例或配置文件修改步骤,引用相关的资料如BiFPN的实现。同时,用户可能对如何开始修改代码有疑问,所以提供步骤性的指导会更好,比如修改哪些文件,调整参数等。 最后,相关问题部分可以引导用户深入探讨性能分析、具体模块的实现细节、部署优化等,帮助他们进一步探索。确保回答准确,符合YOLOv5的官方文档和社区实践,避免错误建议。</think>以下是针对YOLOv5s模型改进的最佳实践和优化方法,结合计算机视觉领域通用方案和特定模块改进策略: ### 一、网络结构优化 1. **特征金字塔改进** - 将原PANet替换为BiFPN(双向特征金字塔网络),增强多尺度特征融合能力。修改`common.py`添加加权双向连接模块,并在`yolov5s_BiFPN.yaml`中调整连接方式[^1]: ```yaml head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, BiFPN_Concat, [256]], # 添加BiFPN连接 ...] ``` 2. **注意力机制集成** - 在Backbone末端添加SE/CBAM/ECA模块: ```python # 在common.py中添加SE模块 class SE(nn.Module): def __init__(self, c1): super().__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(c1, c1//16), nn.ReLU(), nn.Linear(c1//16, c1), nn.Sigmoid()) ``` ### 二、训练策略优化 1. **数据增强改进** - 采用Mosaic9(9图拼接)增强小目标检测能力 - 添加Copy-Paste增强策略,提升遮挡场景表现 2. **损失函数优化** - 将CIoU Loss替换为$\alpha$-IoU Loss: $$ \mathcal{L}_{\alpha\text{-IoU}} = 1 - \left(\frac{2|B∩B^{gt}|}{|B|+|B^{gt}|}\right)^\alpha $$ ### 三、轻量化改进 1. **Ghost模块替换** ```python # 在common.py中使用GhostConv class GhostConv(nn.Module): def __init__(self, c1, c2, k=1, s=1, g=1, act=True): super().__init__() c_ = c2 // 2 self.conv = nn.Sequential( Conv(c1, c_, 1), # 降维 Conv(c_, c_, 5, s, g, act=act), # 深度可分离卷积 ) ``` ### 四、部署优化 1. **模型量化** - 使用TensorRT进行FP16/INT8量化,提升推理速度 ```python import torch model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FriendshipT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值