hdu3081 Marriage Match II 最大流+二分+并查集

题意:有2*n个人   分别为n个女生和n个男生  现在女生要挑选男生进行配对一起做游戏 可以配对的条件是:

1.如果某个男生从来不会跟某个女生吵架 那么这个女生可以选这个男生 

2.如果某个男生从来不会跟某个女生的女性朋友吵架  那么这个女生可以选择这个男生

(朋友关系可以传递 比如女生a和女生b是朋友 女生b和女生c是朋友 那么a和c也是朋友)

每局游戏能进行的条件是 每个女生都能找到可以配对的男生(也就是每局游戏都要有n对) 但是一旦某个女生挑选了某个男生 以后的游戏中这个女生就再也不能挑选这个男生了 求最多能进行多少局比赛。


输入一个T 代表case个数

对应每个case 输入n,m,f 三个整数 n代表有n个女生和n个男生  且女生编号为1~n   男生编号为1~n

接下来的m行 每一行有两个数字 x , y 代表女生x和男生y从来不会吵架

结下来的f行  每一行有两个数字 a , b  代表女生a和女生b是朋友


不难想到应该用并查集保存女生之间的关系

二分最大流 如果最大流量==mid*n 那么满足题意 详细讲解见http://blog.csdn.net/u013480600/article/details/38961991 讲得很清楚


#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<stack>
#include<queue>
#include<cmath>
#include<stack>
#include<list>
#include<map>
#include<set>
typedef long long ll;
using namespace std;
const int MAXN=210;
const int MAXM=1200012;
const int INF=0x3f3f3f3f;

struct Node
{
    int from,to,next;
    int cap;
}edge[MAXM];
int f[105];
int cap[105][105];
int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];

int n;//这里n是点的最大个数 包括源点和汇点

void init()
{
    tol=0;
    memset(head,-1,sizeof(head));
}
int find1(int x)
{
    if(f[x]==x)return x;
    else return f[x]=find1(f[x]);
}

void addedge(int u,int v,int w)
{
    edge[tol].from=u;
    edge[tol].to=v;
    edge[tol].cap=w;
    edge[tol].next=head[u];
    head[u]=tol++;
    edge[tol].from=v;
    edge[tol].to=u;
    edge[tol].cap=0;
    edge[tol].next=head[v];
    head[v]=tol++;
}
void BFS(int start,int end)
{
    memset(dep,-1,sizeof(dep));
    memset(gap,0,sizeof(gap));
    gap[0]=1;
    int que[MAXN];
    int front,rear;
    front=rear=0;
    dep[end]=0;
    que[rear++]=end;
    while(front!=rear)
    {
        int u=que[front++];
        if(front==MAXN)front=0;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(dep[v]!=-1)continue;
            que[rear++]=v;
            if(rear==MAXN)rear=0;
            dep[v]=dep[u]+1;
            ++gap[dep[v]];
        }
    }
}
int SAP(int start,int end)
{
    int res=0;
    BFS(start,end);
    int cur[MAXN];
    int S[MAXN];
    int top=0;
    memcpy(cur,head,sizeof(head));
    int u=start;
    int i;
    while(dep[start]<n)
    {
        if(u==end)
        {
            int temp=INF;
            int inser;
            for(i=0;i<top;i++)
                if(temp>edge[S[i]].cap)
                {
                    temp=edge[S[i]].cap;
                    inser=i;
                }
            for(i=0;i<top;i++)
            {
                edge[S[i]].cap-=temp;
                edge[S[i]^1].cap+=temp;
            }
            res+=temp;
            top=inser;
            u=edge[S[top]].from;
        }
        if(u!=end&&gap[dep[u]-1]==0)
            break;
        for(i=cur[u];i!=-1;i=edge[i].next)
            if(edge[i].cap!=0&&dep[u]==dep[edge[i].to]+1)
                break;
        if(i!=-1)
        {
            cur[u]=i;
            S[top++]=i;
            u=edge[i].to;
        }
        else
        {
            int min=n;
            for(i=head[u];i!=-1;i=edge[i].next)
            {
                if(edge[i].cap==0)continue;
                if(min>dep[edge[i].to])
                {
                    min=dep[edge[i].to];
                    cur[u]=i;
                }
            }
            --gap[dep[u]];
            dep[u]=min+1;
            ++gap[dep[u]];
            if(u!=start)u=edge[S[--top]].from;
        }
    }
    return res;
}
void build(int n1)
{
    int i,j,k;
    for(i=1;i<=n1;i++)
    {
        for(j=i+1;j<=n1;j++)
        {
            if(find1(i)==find1(j)) //如果两个女生属于同一个集合,那么女生i可以挑选的男生女生j也可以挑选
            {                      //女生j可以挑选的男生女生i也可以挑选
                for(k=1;k<=n1;k++)
                {
                    if(cap[i][k]==1||cap[j][k]==1)
                    {
                        cap[i][k]=1;
                        cap[j][k]=1;
                    }
                }
            }
        }
    }
    
    
}
int solve(int n1,int mid)
{
    int i,j;
    init(); //每次都要进行初始化
    for(i=1;i<=n1;i++)
    {
        addedge(0, i, mid);
        addedge(i+n1, 2*n1+1, mid); //女生编号为1~n1 男生为n1+1到n1+n1
    }
    for(i=1;i<=n1;i++)
    {
        
        for(j=1;j<=n1;j++)
        {
            if(cap[i][j]==1)
            {
                addedge(i, j+n1, 1);
            }
        }
    }
    int flow=SAP(0,2*n1+1);  //最大流模板
    return flow;
    
}
int main(){
    
    int i,m,n1,f1;
    int T;
    scanf("%d",&T);
    while(T--)
    {
        for(i=0;i<105;i++)f[i]=i;
        memset(cap,0,sizeof cap);
        scanf("%d%d%d",&n1,&m,&f1);
        n=n1*2+2;
        int x,y;
        while(m--)
        {
            scanf("%d%d",&x,&y);
            cap[x][y]=1;  //女生x和男生y从不吵架 所以连边 容量为1
            // f[y+n1]=x;
        }
        while(f1--)
        {
            scanf("%d%d",&x,&y); //建立女生之间的关系
            int fx=find1(x),fy=find1(y);
            if(fx!=fy)
            {
                f[fx]=fy;
                
            }
            
        }
        for(i=1;i<=n1;i++)f[i]=find1(i);
        build(n1);//建立所有女生与所有男生的关系
        int l=0,r=n1;
        int mid;
        int ans=0;
        while(l<=r) //二分最大流
        {
            mid=(l+r)/2;
            
            if(solve(n1,mid)==mid*n1)
            {
                l=mid+1;
                ans=mid;
                
            }
            else
            {
                r=mid-1;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值