题意:有2*n个人 分别为n个女生和n个男生 现在女生要挑选男生进行配对一起做游戏 可以配对的条件是:
1.如果某个男生从来不会跟某个女生吵架 那么这个女生可以选这个男生
2.如果某个男生从来不会跟某个女生的女性朋友吵架 那么这个女生可以选择这个男生
(朋友关系可以传递 比如女生a和女生b是朋友 女生b和女生c是朋友 那么a和c也是朋友)
每局游戏能进行的条件是 每个女生都能找到可以配对的男生(也就是每局游戏都要有n对) 但是一旦某个女生挑选了某个男生 以后的游戏中这个女生就再也不能挑选这个男生了 求最多能进行多少局比赛。
输入一个T 代表case个数
对应每个case 输入n,m,f 三个整数 n代表有n个女生和n个男生 且女生编号为1~n 男生编号为1~n
接下来的m行 每一行有两个数字 x , y 代表女生x和男生y从来不会吵架
结下来的f行 每一行有两个数字 a , b 代表女生a和女生b是朋友
不难想到应该用并查集保存女生之间的关系
二分最大流 如果最大流量==mid*n 那么满足题意 详细讲解见http://blog.csdn.net/u013480600/article/details/38961991 讲得很清楚
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<stack>
#include<queue>
#include<cmath>
#include<stack>
#include<list>
#include<map>
#include<set>
typedef long long ll;
using namespace std;
const int MAXN=210;
const int MAXM=1200012;
const int INF=0x3f3f3f3f;
struct Node
{
int from,to,next;
int cap;
}edge[MAXM];
int f[105];
int cap[105][105];
int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];
int n;//这里n是点的最大个数 包括源点和汇点
void init()
{
tol=0;
memset(head,-1,sizeof(head));
}
int find1(int x)
{
if(f[x]==x)return x;
else return f[x]=find1(f[x]);
}
void addedge(int u,int v,int w)
{
edge[tol].from=u;
edge[tol].to=v;
edge[tol].cap=w;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].from=v;
edge[tol].to=u;
edge[tol].cap=0;
edge[tol].next=head[v];
head[v]=tol++;
}
void BFS(int start,int end)
{
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
gap[0]=1;
int que[MAXN];
int front,rear;
front=rear=0;
dep[end]=0;
que[rear++]=end;
while(front!=rear)
{
int u=que[front++];
if(front==MAXN)front=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(dep[v]!=-1)continue;
que[rear++]=v;
if(rear==MAXN)rear=0;
dep[v]=dep[u]+1;
++gap[dep[v]];
}
}
}
int SAP(int start,int end)
{
int res=0;
BFS(start,end);
int cur[MAXN];
int S[MAXN];
int top=0;
memcpy(cur,head,sizeof(head));
int u=start;
int i;
while(dep[start]<n)
{
if(u==end)
{
int temp=INF;
int inser;
for(i=0;i<top;i++)
if(temp>edge[S[i]].cap)
{
temp=edge[S[i]].cap;
inser=i;
}
for(i=0;i<top;i++)
{
edge[S[i]].cap-=temp;
edge[S[i]^1].cap+=temp;
}
res+=temp;
top=inser;
u=edge[S[top]].from;
}
if(u!=end&&gap[dep[u]-1]==0)
break;
for(i=cur[u];i!=-1;i=edge[i].next)
if(edge[i].cap!=0&&dep[u]==dep[edge[i].to]+1)
break;
if(i!=-1)
{
cur[u]=i;
S[top++]=i;
u=edge[i].to;
}
else
{
int min=n;
for(i=head[u];i!=-1;i=edge[i].next)
{
if(edge[i].cap==0)continue;
if(min>dep[edge[i].to])
{
min=dep[edge[i].to];
cur[u]=i;
}
}
--gap[dep[u]];
dep[u]=min+1;
++gap[dep[u]];
if(u!=start)u=edge[S[--top]].from;
}
}
return res;
}
void build(int n1)
{
int i,j,k;
for(i=1;i<=n1;i++)
{
for(j=i+1;j<=n1;j++)
{
if(find1(i)==find1(j)) //如果两个女生属于同一个集合,那么女生i可以挑选的男生女生j也可以挑选
{ //女生j可以挑选的男生女生i也可以挑选
for(k=1;k<=n1;k++)
{
if(cap[i][k]==1||cap[j][k]==1)
{
cap[i][k]=1;
cap[j][k]=1;
}
}
}
}
}
}
int solve(int n1,int mid)
{
int i,j;
init(); //每次都要进行初始化
for(i=1;i<=n1;i++)
{
addedge(0, i, mid);
addedge(i+n1, 2*n1+1, mid); //女生编号为1~n1 男生为n1+1到n1+n1
}
for(i=1;i<=n1;i++)
{
for(j=1;j<=n1;j++)
{
if(cap[i][j]==1)
{
addedge(i, j+n1, 1);
}
}
}
int flow=SAP(0,2*n1+1); //最大流模板
return flow;
}
int main(){
int i,m,n1,f1;
int T;
scanf("%d",&T);
while(T--)
{
for(i=0;i<105;i++)f[i]=i;
memset(cap,0,sizeof cap);
scanf("%d%d%d",&n1,&m,&f1);
n=n1*2+2;
int x,y;
while(m--)
{
scanf("%d%d",&x,&y);
cap[x][y]=1; //女生x和男生y从不吵架 所以连边 容量为1
// f[y+n1]=x;
}
while(f1--)
{
scanf("%d%d",&x,&y); //建立女生之间的关系
int fx=find1(x),fy=find1(y);
if(fx!=fy)
{
f[fx]=fy;
}
}
for(i=1;i<=n1;i++)f[i]=find1(i);
build(n1);//建立所有女生与所有男生的关系
int l=0,r=n1;
int mid;
int ans=0;
while(l<=r) //二分最大流
{
mid=(l+r)/2;
if(solve(n1,mid)==mid*n1)
{
l=mid+1;
ans=mid;
}
else
{
r=mid-1;
}
}
printf("%d\n",ans);
}
return 0;
}