1.气体的状态参量
⑴体积
体积是指气体分子热运动所能达到的空间。
⑵压强
气体的压强是指作用于容器壁上单位面积的正压力,SI制单位:Pa(帕斯卡)。
⑶温度
在宏观上用来表示物体的冷热程度。
温标:温度的数值标定方法。eg:摄氏温标,理想气体温标,热力学温标,华氏温标等。
SI制单位:K.(开尔文)。
以水的三相点(即冰,水,汽达到三相平衡共存时的点)温度为273.16K。
摄氏温度 t 与热力学温度 T 在数值上的换算关系:
T
=
t
+
273.16
T = t + 273.16
T=t+273.16
2.平衡态
热力学系统:大量微观粒子(分子或原子等)组成的宏观物体或物体系统。(以下简称系统)。
环境:系统以外与系统密切相关的部分(也叫外界)。
孤立系统:系统与环境既不交换物质也不交换能量。
封闭系统或闭合系统:系统与环境存在能量交换,但无物质交换。
开放系统:系统与环境既有能量交换,又有物质交换。
平衡态的概念
如果系统不受外界影响,内部也没有任何形式的能量转化,则系统会保持这一宏观性质不随时间变化的稳定状态,这一状态称为平衡状态。
举一个经典的例子:将一根金属棒的两端分别浸入温度不同的两种液体中,两种液体的温度都保持不变。那么金属棒是不是处于平衡态呢?
答案为否,我们需要明确系统达到平衡态的两个条件:
- 系统不受外界影响;
- 系统的宏观性质不随时间变化;
显然金属棒受外界的影响,所以并不处于平衡态。
需注意的是
- 平衡态仅指系统的宏观性质不随时间变化,从微观的角度而言,组成系统的大量粒子仍在做无规则的热运动,只是大量粒子运动的平均效果不变,在宏观上可以认为系统达到了平衡。
- 平衡态是一种理想状态,实际上不存在孤立系统。但当系统收到外界的作用可以忽略时,系统可以近似看作平衡态。
- 我们在接下里讨论的气体状态均处于平衡态。
- 处于平衡态的系统可以用 p − V p-V p−V 图上的一个点描述。
3.理想气体状态方程
对处于平衡态的一定量的气体,可用温度
T
T
T,压强
p
p
p,体积
V
V
V 这三个状态参量来表示它的状态。我们高中学过,这三个参量满足一个关系式:
p
V
=
m
M
R
T
=
ν
R
T
pV=\frac{m}{M}RT=νRT
pV=MmRT=νRT
m
m
m为气体质量;
M
M
M为气体分子的摩尔质量;
ν
ν
ν表示物质的量;
R
R
R为普适气体常量,SI制中
R
=
8.31
J
/
(
m
o
l
⋅
K
)
R=8.31J/(mol·K)
R=8.31J/(mol⋅K)
这个关系式由三个定律导出:
玻意尔定律,盖•吕萨克定律,查理定律,相信上过高中的童鞋都有所耳闻。
这是大学版的理想气体状态方程,与我们高中所学有一点差别,高中物理和化学上常使用
p
V
=
n
R
T
pV=nRT
pV=nRT,这里的
n
n
n 和
ν
ν
ν均表示物质的量(在大学物理就不要写作
n
n
n 了,改成
ν
ν
ν)。
4.准静态过程
定义
系统的状态变化过程进行得足够缓慢,以至于系统所经历的每一个中间状态都无限接近平衡态,系统在这一变化过程中的任何时刻都可以当作平衡态处理,这样的过程称为准静态过程。
tip[其实定义不用太纠结,不同的书有不同的说法,大致有个概念就行。]
理解
准静态过程也是一个理想过程,可以这样理解:
我们在高中物理学过动态平衡问题(就是对一个由静止开始缓慢移动的物体进行受力分析,分析力的变化规律),我们在这里并不讨论这种题的做法,而是考虑,物体在由静止开始移动过程中,一定存在一个(极小的)加速度,我们在对物体受力分析的过程中,并没有考虑这个加速度,而是把物体视作处于平衡状态(力的矢量和为零)。
同样的,当系统的状态发生改变时,我们也把系统的每一时刻都视为平衡态。
性质
- 准静态过程可用 p − V p-V p−V 图中的一条曲线描述,曲线上的每个点都是一个平衡态。
- 准静态过程是一个受迫过程(非自发)。
5.功、热量和内能
内能
系统的内能包括系统内所有分子的动能、势能,以及原子核能等。
在热力学研究范围内,只考虑分子的动能和势能。
对于一般的气体,分子的动能和势能取决于气体的温度和体积,因而其内能是温度和体积的函数。
对理想气体来说,在微观上分子间的作用力可以忽略不计,即势能可以忽略,其内能是分子动能之和,故内能只是温度的函数。
改变系统内能的两种途径
- 系统与环境有热交换;
- 系统对外界做功或外界对系统做功;
状态量与过程量
物理学中,把不但与初、末状态有关,还与中间过程有关的物理量叫做过程量。
只与初、末状态有关而与过程无关的物理量叫做状态量。
6.比热容、热容
比热容是初中物理的知识,这里做个回忆。
比热容:单位质量的物质在温度升高或降低1K时所吸收或放出的热量,计算公式:
c
=
Δ
Q
m
Δ
T
c=\frac{\Delta Q}{m \Delta T}
c=mΔTΔQ
热容:系统在某一过程中温度升高(或降低)1K时所吸收(或放出)的热量。其公式:
C
=
d
Q
d
T
(1)
C=\frac{\mathrm{d}Q}{\mathrm{d}T}\tag{1}
C=dTdQ(1)
注意
如果系统与外界不发生热传递,而系统的温度发生了改变,则
d
Q
=
0
\mathrm{d}Q=0
dQ=0,
d
T
≠
0
\mathrm{d}T\neq0
dT=0,则热容
C
=
0
C=0
C=0;
如果系统与外界发生了热传递,而系统的温度未发生改变,则
d
Q
≠
0
\mathrm{d}Q\neq0
dQ=0,
d
T
=
0
\mathrm{d}T=0
dT=0,则热容
C
→
∞
C \to \infty
C→∞,无物理意义;
这些现象说明热容与过程有关,故热容是一个过程量。
由⑴式,我们可以得出,在一过程中,系统与外界的热交换公式:
Q
=
∫
T
1
T
2
C
d
T
(2)
Q=\int^{T_2}_{T_1}{C\mathrm{d}T}\tag{2}
Q=∫T1T2CdT(2)
但是,我们在做热力学的题目以及后续的一些推导过程中,我们都把热容
C
C
C 当作一个常量。故 ⑵ 式可变为:
Q
=
C
(
T
1
−
T
2
)
(3)
Q=C(T_1-T_2)\tag{3}
Q=C(T1−T2)(3)