热力学第一定律

基本表达式

Q = Δ E + W (1) Q=\Delta E+W\tag{1} Q=ΔE+W(1)

分析

Q > 0 Q>0 Q>0 时,系统从外界吸收热量;当 Q < 0 Q<0 Q<0 时,系统向外界放出热量;
W > 0 W>0 W>0 时,系统对外界做功;当 W < 0 W<0 W<0 时,外界对系统做功;
Δ E > 0 \Delta E>0 ΔE>0 时,系统内能增加;当 Δ E < 0 \Delta E<0 ΔE<0 时,系统内能减少;

微分表达式

d Q = d E + d W (2) \mathrm dQ=\mathrm dE+\mathrm dW\tag{2} dQ=dE+dW(2)
或者
d Q = d E + p d V (3) \mathrm dQ=\mathrm dE+p\mathrm dV\tag{3} dQ=dE+pdV(3)
⑴ 式也可表示为
Q = Δ E + ∫ V 2 V 2 p d V (4) Q=\Delta E+\int^{V_2}_{V_2}{p\mathrm dV}\tag{4} Q=ΔE+V2V2pdV(4)

注意

  1. ⑴ 式和 ⑵ 式对准静态过程普遍适用,而对于非准静态过程,则要求系统的初,末状态是平衡态;
  2. ⑶ 式和 ⑷ 式严格要求这个过程是准静态过程;
  3. 第一类永动机违背的是热力学第一定律;

热力学第一定律在理想气体准静态过程中的应用

等体过程

显然 d W = 0 (5) \mathrm d{W}=0\tag{5} dW=0(5)
那么 d Q V = d E (6) \mathrm d{Q_V}=\mathrm d{E}\tag{6} dQV=dE(6)
Q V = E 2 − E 1 (7) Q_V=E_2-E_1\tag{7} QV=E2E1(7)
等体过程中,系统吸收的热量全部用于内能的增加。

定体摩尔热容

定义

1 m o l 1mol 1mol 理想气体在等体过程中升高单位温度所吸收的热量。

表达式

C V = d Q V d T (8) C_V=\frac{\mathrm d{Q_V}}{\mathrm d{T}}\tag{8} CV=dTdQV(8)
根据⑹式,上式也可写成:
C V = d E d T (9) C_V=\frac{\mathrm d{E}}{\mathrm d{T}}\tag{9} CV=dTdE(9)
这里我们把 C V C_V CV 当作常数,那么对于物质的量为 ν ν ν 的理想气体,在等体过程中,温度由 T 1 T_1 T1 变为 T 2 T_2 T2 ,系统吸收的热量为:
Q V = ν C V ( T 2 − T 1 ) (10) Q_V=νC_V(T_2-T_1)\tag{10} QV=νCV(T2T1)(10)
同理:
Δ E = ν C V ( T 2 − T 1 ) (11) \Delta E=νC_V(T_2-T_1)\tag{11} ΔE=νCV(T2T1)(11)
Δ E \Delta E ΔE 就是理想气体的内能增量,这个式子不仅使用于等体的情况,还适用于其他的三种准静态过程(任何过程都适用)(因为理想气体的内能与体积没有关系)。

等压过程

显然
W p = p ( V 2 − V 1 ) (12) W_p=p(V_2-V_1)\tag{12} Wp=p(V2V1)(12)
根据理想气体状态方程,可得:
W p = ν R ( T 2 − T 1 ) (13) W_p=νR(T_2-T_1)\tag{13} Wp=νR(T2T1)(13)
根据热力学第一定律,可得:
Q = Δ E + W p = ν C V ( T 2 − T 1 ) + ν R ( T 2 − T 1 ) (14) Q=\Delta E+W_p=νC_V(T_2-T_1)+νR(T_2-T_1)\tag{14} Q=ΔE+Wp=νCV(T2T1)+νR(T2T1)(14)
等压过程中,系统吸收的热量,一部分用来增加系统的内能,一部分用来对外界做功。

等压摩尔热容

定义

1 m o l 1mol 1mol 理想气体在等压过程中升高单位温度所吸收的热量。

表达式

C p = d Q p d T (15) C_p=\frac{\mathrm d{Q_p}}{\mathrm d{T}}\tag{15} Cp=dTdQp(15)
因为
d Q p = d E + p d V (16) \mathrm dQ_p=\mathrm dE+p\mathrm dV\tag{16} dQp=dE+pdV(16)
所以
C p = d E + p d V d T = d E d T + p d V d T (17) C_p=\frac{\mathrm dE+p\mathrm dV}{\mathrm dT}=\frac{\mathrm dE}{\mathrm dT}+p\frac{\mathrm dV}{\mathrm dT}\tag{17} Cp=dTdE+pdV=dTdE+pdTdV(17)
对于 1 m o l 1mol 1mol 的理想气体, d E = C V d T \mathrm dE=C_V\mathrm dT dE=CVdT
又由理想气体状态方程可知, p d V = R d T p\mathrm dV=R\mathrm dT pdV=RdT
所以⒁可以写成:
C p = C V + R (18) C_p=C_V+R\tag{18} Cp=CV+R(18)
上式叫迈耶公式

比热容比

γ = C p C V (19) γ=\frac{C_p}{C_V}\tag{19} γ=CVCp(19)

要记忆的东西

我们在解决热力学问题时,理想气体的 C p , C V , γ C_p,C_V,γ Cp,CV,γ都可以当作常数。
单原子气体分子: C V ≈ 3 2 R C_V\approx\frac{3}{2}R CV23R γ = 1.67 γ=1.67 γ=1.67
双原子气体分子: C V ≈ 5 2 R C_V\approx\frac{5}{2}R CV25R γ = 1.40 γ=1.40 γ=1.40

等温过程

显然,系统的内能不变,即:
Δ E = 0 (20) \Delta E=0\tag{20} ΔE=0(20)
那么:
Q T = W T (21) Q_T=W_T\tag{21} QT=WT(21)

d W T = p d V (22) \mathrm dW_T=p\mathrm dV\tag{22} dWT=pdV(22) p V = ν R T (23) pV=νRT\tag{23} pV=νRT(23)
所以
d W T = ν R T V d V (24) \mathrm dW_T=\frac{νRT}{V}\mathrm dV\tag{24} dWT=VνRTdV(24)
两边同时积分,得:
W T = ν R T ∫ V 1 V 2 1 V d V = ν R T ln ⁡ V 2 V 1 = ν R T ln ⁡ p 1 p 2 (25) W_T=νRT\int^{V_2}_{V_1}\frac{1}{V}\mathrm dV=νRT\ln \frac{V_2}{V_1}=νRT\ln \frac{p_1}{p_2}\tag{25} WT=νRTV1V2V1dV=νRTlnV1V2=νRTlnp2p1(25)

Q T = W T = ν R T ln ⁡ V 2 V 1 = ν R T ln ⁡ p 1 p 2 (26) Q_T=W_T=νRT\ln \frac{V_2}{V_1}=νRT\ln \frac{p_1}{p_2}\tag{26} QT=WT=νRTlnV1V2=νRTlnp2p1(26)

分析

当理想气体等温膨胀时, V 2 > V 1 V_2>V_1 V2>V1 Q T = W T > 0 Q_T=W_T>0 QT=WT>0,表明系统吸收的热量全部用于对外做功;
当理想气体等温压缩时, V 2 < V 1 V_2<V_1 V2<V1 Q T = W T < 0 Q_T=W_T<0 QT=WT<0,表明外界对系统做的功全部转化为热量向外界放出;
需要注意的是,这种功热转换是不能直接完成的,要通过一定的物质系统才能实现,eg : 外界向系统传递的热量(或做的功),先使系统的内能增加,然后再由系统将增加的这部分内能转化为对外做的功(或放出的热量)。

绝热过程

显然,系统既不吸热,也不放热:
d Q = 0 \mathrm dQ=0 dQ=0
则:
d W Q = − d E \mathrm dW_Q=-\mathrm dE dWQ=dE W Q = − d E = − ( E 2 − E 1 ) W_Q=-\mathrm dE=-(E_2-E_1) WQ=dE=(E2E1)
可见,绝热过程,系统对外做功 W Q W_Q WQ,完全取决于系统自身内能的减少 − d E -\mathrm dE dE
当理想气体绝热膨胀时, W > 0 W>0 W>0,系统内能减少,温度降低,压强减小;
当理想气体绝热压缩时, W < 0 W<0 W<0,系统内能增加,温度升高,压强增大;
由理想气体内能增量的公式:
Δ E = E 2 − E 1 = ν C V ( T 2 − T 1 ) \Delta E=E_2-E_1=νC_V(T_2-T_1) ΔE=E2E1=νCV(T2T1)即:
W Q = − ν C V ( T 2 − T 1 ) W_Q=-νC_V(T_2-T_1) WQ=νCV(T2T1)
d W Q = p d V = − d E = − ν C V d T (27) \mathrm dW_Q=p\mathrm dV =-\mathrm dE=-νC_V\mathrm dT\tag{27} dWQ=pdV=dE=νCVdT(27)对理想气体状态方程两边同时取微分,得:
p d V + V d p = ν R d T (28) p\mathrm dV+V\mathrm dp=νR\mathrm dT\tag{28} pdV+Vdp=νRdT(28)联立(27)和(28)消去 d T \mathrm dT dT得:
( C V + R ) p d V + C V V d p = 0 (C_V+R)p\mathrm dV+C_VV\mathrm dp=0 (CV+R)pdV+CVVdp=0根据迈耶公式
C p p d V + C V V d p = 0 C_pp\mathrm dV+C_VV\mathrm dp=0 CppdV+CVVdp=0分离变量:
C p C V d V V = − d p p \frac{C_p}{C_V}\frac{\mathrm dV}{V}=-\frac{\mathrm dp}{p} CVCpVdV=pdp对上式积分:
ln ⁡ p + γ ln ⁡ V = C \ln p+γ\ln V=C lnp+γlnV=C即:
p V γ = C 1 pV^γ=C_1 pVγ=C1
上式叫泊松公式。根据理想气体状态方程,还可以得出以下两个式子:
T V γ − 1 = C 2 TV^{γ-1}=C_2 TVγ1=C2 p 1 − γ T γ = C 3 p^{1-γ}T^γ=C_3 p1γTγ=C3

与等温过程相比较

在等温过程中,由于温度不变, p V = ν R T pV=νRT pV=νRT p p p V V V 成反比。
在绝热过程中, p V γ = C 1 ( C 1 为常数 ) pV^γ=C1(C1为常数) pVγ=C1(C1为常数)
将这两个过程放在同一个 p − V p-V pV 图里,我们可以看到绝热过程的曲线更陡。
曲线比较
证明
等温过程:
V V V 看作自变量, p p p 看作因变量。使用隐函数求导,不难得出
( d p d V ) T = − p A V A \big(\frac{\mathrm dp}{\mathrm dV}\big)_T=-\frac{p_A}{V_A} (dVdp)T=VApA
绝热过程:
V V V 看作自变量, p p p 看作因变量。使用隐函数求导,不难得出
( d p d V ) Q = − γ p A V A \big(\frac{\mathrm dp}{\mathrm dV}\big)_Q=-γ\frac{p_A}{V_A} (dVdp)Q=γVApA
又因为 γ > 1 γ>1 γ>1,所以 ∣ ( d p d V ) T ∣ < ∣ ( d p d V ) Q ∣ |(\frac{\mathrm dp}{\mathrm dV})_T|<|(\frac{\mathrm dp}{\mathrm dV})_Q| (dVdp)T<(dVdp)Q,即在 p − V p-V pV图里,绝热线比等温线要陡

绝热过程理想气体对外做功

W Q = ∫ V 1 V 2 p d V = ∫ V 1 V 2 C 1 V γ d V = C 1 1 1 − γ V 1 − γ ∣ V 1 V 2 = C 1 1 − γ ( V 2 1 − γ − V 1 1 − γ ) = p 2 V 2 γ V 2 1 − γ − p 1 V 1 γ V 1 1 − γ 1 − γ = p 2 V 2 − p 1 V 1 1 − γ = p 1 V 1 − p 2 V 2 γ − 1 W_Q=\int^{V_2}_{V_1}p\mathrm dV=\int^{V_2}_{V_1}\frac{C_1}{V^γ}\mathrm dV=C_1\frac{1}{1-γ}V^{1-γ} \big |_{V_1}^{V_2}=\frac{C_1}{1-γ}(V_2^{1-γ}-V_1^{1-γ})=\frac{p_2V_2^γV_2^{1-γ}-p_1V_1^γV_1^{1-γ}}{1-γ}=\frac{p_2V_2-p_1V_1}{1-γ}=\frac{p_1V_1-p_2V_2}{γ-1} WQ=V1V2pdV=V1V2VγC1dV=C11γ1V1γ V1V2=1γC1(V21γV11γ)=1γp2V2γV21γp1V1γV11γ=1γp2V2p1V1=γ1p1V1p2V2

总结

等体等压等温绝热
W W W0 p ( V 2 − V 1 ) p(V_2-V_1) p(V2V1) ν R T ln ⁡ V 2 V 1 νRT\ln \frac{V_2}{V_1} νRTlnV1V2 p 1 V 1 − p 2 V 2 γ − 1 \frac{p_1V_1-p_2V_2}{γ-1} γ1p1V1p2V2
Q Q Q ν C V ( T 2 − T 1 ) νC_V(T_2-T_1) νCV(T2T1) ν C p ( T 2 − T 1 ) νC_p(T_2-T_1) νCp(T2T1) ν R T ln ⁡ V 2 V 1 νRT\ln \frac{V_2}{V_1} νRTlnV1V20
Δ E \Delta E ΔE ν C V ( T 2 − T 1 ) νC_V(T_2-T_1) νCV(T2T1) ν C V ( T 2 − T 1 ) νC_V(T_2-T_1) νCV(T2T1)0 p 1 V 1 − p 2 V 2 1 − γ \frac{p_1V_1-p_2V_2}{1-γ} 1γp1V1p2V2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值