基本表达式
Q = Δ E + W (1) Q=\Delta E+W\tag{1} Q=ΔE+W(1)
分析
当
Q
>
0
Q>0
Q>0 时,系统从外界吸收热量;当
Q
<
0
Q<0
Q<0 时,系统向外界放出热量;
当
W
>
0
W>0
W>0 时,系统对外界做功;当
W
<
0
W<0
W<0 时,外界对系统做功;
当
Δ
E
>
0
\Delta E>0
ΔE>0 时,系统内能增加;当
Δ
E
<
0
\Delta E<0
ΔE<0 时,系统内能减少;
微分表达式
d
Q
=
d
E
+
d
W
(2)
\mathrm dQ=\mathrm dE+\mathrm dW\tag{2}
dQ=dE+dW(2)
或者
d
Q
=
d
E
+
p
d
V
(3)
\mathrm dQ=\mathrm dE+p\mathrm dV\tag{3}
dQ=dE+pdV(3)
⑴ 式也可表示为
Q
=
Δ
E
+
∫
V
2
V
2
p
d
V
(4)
Q=\Delta E+\int^{V_2}_{V_2}{p\mathrm dV}\tag{4}
Q=ΔE+∫V2V2pdV(4)
注意
- ⑴ 式和 ⑵ 式对准静态过程普遍适用,而对于非准静态过程,则要求系统的初,末状态是平衡态;
- ⑶ 式和 ⑷ 式严格要求这个过程是准静态过程;
- 第一类永动机违背的是热力学第一定律;
热力学第一定律在理想气体准静态过程中的应用
等体过程
显然
d
W
=
0
(5)
\mathrm d{W}=0\tag{5}
dW=0(5)
那么
d
Q
V
=
d
E
(6)
\mathrm d{Q_V}=\mathrm d{E}\tag{6}
dQV=dE(6)
即
Q
V
=
E
2
−
E
1
(7)
Q_V=E_2-E_1\tag{7}
QV=E2−E1(7)
等体过程中,系统吸收的热量全部用于内能的增加。
定体摩尔热容
定义
1 m o l 1mol 1mol 理想气体在等体过程中升高单位温度所吸收的热量。
表达式
C
V
=
d
Q
V
d
T
(8)
C_V=\frac{\mathrm d{Q_V}}{\mathrm d{T}}\tag{8}
CV=dTdQV(8)
根据⑹式,上式也可写成:
C
V
=
d
E
d
T
(9)
C_V=\frac{\mathrm d{E}}{\mathrm d{T}}\tag{9}
CV=dTdE(9)
这里我们把
C
V
C_V
CV 当作常数,那么对于物质的量为
ν
ν
ν 的理想气体,在等体过程中,温度由
T
1
T_1
T1 变为
T
2
T_2
T2 ,系统吸收的热量为:
Q
V
=
ν
C
V
(
T
2
−
T
1
)
(10)
Q_V=νC_V(T_2-T_1)\tag{10}
QV=νCV(T2−T1)(10)
同理:
Δ
E
=
ν
C
V
(
T
2
−
T
1
)
(11)
\Delta E=νC_V(T_2-T_1)\tag{11}
ΔE=νCV(T2−T1)(11)
Δ
E
\Delta E
ΔE 就是理想气体的内能增量,这个式子不仅使用于等体的情况,还适用于其他的三种准静态过程(任何过程都适用)(因为理想气体的内能与体积没有关系)。
等压过程
显然
W
p
=
p
(
V
2
−
V
1
)
(12)
W_p=p(V_2-V_1)\tag{12}
Wp=p(V2−V1)(12)
根据理想气体状态方程,可得:
W
p
=
ν
R
(
T
2
−
T
1
)
(13)
W_p=νR(T_2-T_1)\tag{13}
Wp=νR(T2−T1)(13)
根据热力学第一定律,可得:
Q
=
Δ
E
+
W
p
=
ν
C
V
(
T
2
−
T
1
)
+
ν
R
(
T
2
−
T
1
)
(14)
Q=\Delta E+W_p=νC_V(T_2-T_1)+νR(T_2-T_1)\tag{14}
Q=ΔE+Wp=νCV(T2−T1)+νR(T2−T1)(14)
等压过程中,系统吸收的热量,一部分用来增加系统的内能,一部分用来对外界做功。
等压摩尔热容
定义
1 m o l 1mol 1mol 理想气体在等压过程中升高单位温度所吸收的热量。
表达式
C
p
=
d
Q
p
d
T
(15)
C_p=\frac{\mathrm d{Q_p}}{\mathrm d{T}}\tag{15}
Cp=dTdQp(15)
因为
d
Q
p
=
d
E
+
p
d
V
(16)
\mathrm dQ_p=\mathrm dE+p\mathrm dV\tag{16}
dQp=dE+pdV(16)
所以
C
p
=
d
E
+
p
d
V
d
T
=
d
E
d
T
+
p
d
V
d
T
(17)
C_p=\frac{\mathrm dE+p\mathrm dV}{\mathrm dT}=\frac{\mathrm dE}{\mathrm dT}+p\frac{\mathrm dV}{\mathrm dT}\tag{17}
Cp=dTdE+pdV=dTdE+pdTdV(17)
对于
1
m
o
l
1mol
1mol 的理想气体,
d
E
=
C
V
d
T
\mathrm dE=C_V\mathrm dT
dE=CVdT,
又由理想气体状态方程可知,
p
d
V
=
R
d
T
p\mathrm dV=R\mathrm dT
pdV=RdT
所以⒁可以写成:
C
p
=
C
V
+
R
(18)
C_p=C_V+R\tag{18}
Cp=CV+R(18)
上式叫迈耶公式。
比热容比
γ = C p C V (19) γ=\frac{C_p}{C_V}\tag{19} γ=CVCp(19)
要记忆的东西
我们在解决热力学问题时,理想气体的
C
p
,
C
V
,
γ
C_p,C_V,γ
Cp,CV,γ都可以当作常数。
单原子气体分子:
C
V
≈
3
2
R
C_V\approx\frac{3}{2}R
CV≈23R,
γ
=
1.67
γ=1.67
γ=1.67;
双原子气体分子:
C
V
≈
5
2
R
C_V\approx\frac{5}{2}R
CV≈25R,
γ
=
1.40
γ=1.40
γ=1.40;
等温过程
显然,系统的内能不变,即:
Δ
E
=
0
(20)
\Delta E=0\tag{20}
ΔE=0(20)
那么:
Q
T
=
W
T
(21)
Q_T=W_T\tag{21}
QT=WT(21)
又
d
W
T
=
p
d
V
(22)
\mathrm dW_T=p\mathrm dV\tag{22}
dWT=pdV(22)
p
V
=
ν
R
T
(23)
pV=νRT\tag{23}
pV=νRT(23)
所以
d
W
T
=
ν
R
T
V
d
V
(24)
\mathrm dW_T=\frac{νRT}{V}\mathrm dV\tag{24}
dWT=VνRTdV(24)
两边同时积分,得:
W
T
=
ν
R
T
∫
V
1
V
2
1
V
d
V
=
ν
R
T
ln
V
2
V
1
=
ν
R
T
ln
p
1
p
2
(25)
W_T=νRT\int^{V_2}_{V_1}\frac{1}{V}\mathrm dV=νRT\ln \frac{V_2}{V_1}=νRT\ln \frac{p_1}{p_2}\tag{25}
WT=νRT∫V1V2V1dV=νRTlnV1V2=νRTlnp2p1(25)
即
Q
T
=
W
T
=
ν
R
T
ln
V
2
V
1
=
ν
R
T
ln
p
1
p
2
(26)
Q_T=W_T=νRT\ln \frac{V_2}{V_1}=νRT\ln \frac{p_1}{p_2}\tag{26}
QT=WT=νRTlnV1V2=νRTlnp2p1(26)
分析
当理想气体等温膨胀时,
V
2
>
V
1
V_2>V_1
V2>V1,
Q
T
=
W
T
>
0
Q_T=W_T>0
QT=WT>0,表明系统吸收的热量全部用于对外做功;
当理想气体等温压缩时,
V
2
<
V
1
V_2<V_1
V2<V1,
Q
T
=
W
T
<
0
Q_T=W_T<0
QT=WT<0,表明外界对系统做的功全部转化为热量向外界放出;
需要注意的是,这种功热转换是不能直接完成的,要通过一定的物质系统才能实现,eg : 外界向系统传递的热量(或做的功),先使系统的内能增加,然后再由系统将增加的这部分内能转化为对外做的功(或放出的热量)。
绝热过程
显然,系统既不吸热,也不放热:
d
Q
=
0
\mathrm dQ=0
dQ=0
则:
d
W
Q
=
−
d
E
\mathrm dW_Q=-\mathrm dE
dWQ=−dE
W
Q
=
−
d
E
=
−
(
E
2
−
E
1
)
W_Q=-\mathrm dE=-(E_2-E_1)
WQ=−dE=−(E2−E1)
可见,绝热过程,系统对外做功
W
Q
W_Q
WQ,完全取决于系统自身内能的减少
−
d
E
-\mathrm dE
−dE;
当理想气体绝热膨胀时,
W
>
0
W>0
W>0,系统内能减少,温度降低,压强减小;
当理想气体绝热压缩时,
W
<
0
W<0
W<0,系统内能增加,温度升高,压强增大;
由理想气体内能增量的公式:
Δ
E
=
E
2
−
E
1
=
ν
C
V
(
T
2
−
T
1
)
\Delta E=E_2-E_1=νC_V(T_2-T_1)
ΔE=E2−E1=νCV(T2−T1)即:
W
Q
=
−
ν
C
V
(
T
2
−
T
1
)
W_Q=-νC_V(T_2-T_1)
WQ=−νCV(T2−T1)又
d
W
Q
=
p
d
V
=
−
d
E
=
−
ν
C
V
d
T
(27)
\mathrm dW_Q=p\mathrm dV =-\mathrm dE=-νC_V\mathrm dT\tag{27}
dWQ=pdV=−dE=−νCVdT(27)对理想气体状态方程两边同时取微分,得:
p
d
V
+
V
d
p
=
ν
R
d
T
(28)
p\mathrm dV+V\mathrm dp=νR\mathrm dT\tag{28}
pdV+Vdp=νRdT(28)联立(27)和(28)消去
d
T
\mathrm dT
dT得:
(
C
V
+
R
)
p
d
V
+
C
V
V
d
p
=
0
(C_V+R)p\mathrm dV+C_VV\mathrm dp=0
(CV+R)pdV+CVVdp=0根据迈耶公式
C
p
p
d
V
+
C
V
V
d
p
=
0
C_pp\mathrm dV+C_VV\mathrm dp=0
CppdV+CVVdp=0分离变量:
C
p
C
V
d
V
V
=
−
d
p
p
\frac{C_p}{C_V}\frac{\mathrm dV}{V}=-\frac{\mathrm dp}{p}
CVCpVdV=−pdp对上式积分:
ln
p
+
γ
ln
V
=
C
\ln p+γ\ln V=C
lnp+γlnV=C即:
p
V
γ
=
C
1
pV^γ=C_1
pVγ=C1
上式叫泊松公式。根据理想气体状态方程,还可以得出以下两个式子:
T
V
γ
−
1
=
C
2
TV^{γ-1}=C_2
TVγ−1=C2
p
1
−
γ
T
γ
=
C
3
p^{1-γ}T^γ=C_3
p1−γTγ=C3
与等温过程相比较
在等温过程中,由于温度不变,
p
V
=
ν
R
T
pV=νRT
pV=νRT,
p
p
p 和
V
V
V 成反比。
在绝热过程中,
p
V
γ
=
C
1
(
C
1
为常数
)
pV^γ=C1(C1为常数)
pVγ=C1(C1为常数)。
将这两个过程放在同一个
p
−
V
p-V
p−V 图里,我们可以看到绝热过程的曲线更陡。
证明
等温过程:
把
V
V
V 看作自变量,
p
p
p 看作因变量。使用隐函数求导,不难得出
(
d
p
d
V
)
T
=
−
p
A
V
A
\big(\frac{\mathrm dp}{\mathrm dV}\big)_T=-\frac{p_A}{V_A}
(dVdp)T=−VApA
绝热过程:
把
V
V
V 看作自变量,
p
p
p 看作因变量。使用隐函数求导,不难得出
(
d
p
d
V
)
Q
=
−
γ
p
A
V
A
\big(\frac{\mathrm dp}{\mathrm dV}\big)_Q=-γ\frac{p_A}{V_A}
(dVdp)Q=−γVApA
又因为
γ
>
1
γ>1
γ>1,所以
∣
(
d
p
d
V
)
T
∣
<
∣
(
d
p
d
V
)
Q
∣
|(\frac{\mathrm dp}{\mathrm dV})_T|<|(\frac{\mathrm dp}{\mathrm dV})_Q|
∣(dVdp)T∣<∣(dVdp)Q∣,即在
p
−
V
p-V
p−V图里,绝热线比等温线要陡。
绝热过程理想气体对外做功
W Q = ∫ V 1 V 2 p d V = ∫ V 1 V 2 C 1 V γ d V = C 1 1 1 − γ V 1 − γ ∣ V 1 V 2 = C 1 1 − γ ( V 2 1 − γ − V 1 1 − γ ) = p 2 V 2 γ V 2 1 − γ − p 1 V 1 γ V 1 1 − γ 1 − γ = p 2 V 2 − p 1 V 1 1 − γ = p 1 V 1 − p 2 V 2 γ − 1 W_Q=\int^{V_2}_{V_1}p\mathrm dV=\int^{V_2}_{V_1}\frac{C_1}{V^γ}\mathrm dV=C_1\frac{1}{1-γ}V^{1-γ} \big |_{V_1}^{V_2}=\frac{C_1}{1-γ}(V_2^{1-γ}-V_1^{1-γ})=\frac{p_2V_2^γV_2^{1-γ}-p_1V_1^γV_1^{1-γ}}{1-γ}=\frac{p_2V_2-p_1V_1}{1-γ}=\frac{p_1V_1-p_2V_2}{γ-1} WQ=∫V1V2pdV=∫V1V2VγC1dV=C11−γ1V1−γ V1V2=1−γC1(V21−γ−V11−γ)=1−γp2V2γV21−γ−p1V1γV11−γ=1−γp2V2−p1V1=γ−1p1V1−p2V2
总结
等体 | 等压 | 等温 | 绝热 | |
---|---|---|---|---|
W W W | 0 | p ( V 2 − V 1 ) p(V_2-V_1) p(V2−V1) | ν R T ln V 2 V 1 νRT\ln \frac{V_2}{V_1} νRTlnV1V2 | p 1 V 1 − p 2 V 2 γ − 1 \frac{p_1V_1-p_2V_2}{γ-1} γ−1p1V1−p2V2 |
Q Q Q | ν C V ( T 2 − T 1 ) νC_V(T_2-T_1) νCV(T2−T1) | ν C p ( T 2 − T 1 ) νC_p(T_2-T_1) νCp(T2−T1) | ν R T ln V 2 V 1 νRT\ln \frac{V_2}{V_1} νRTlnV1V2 | 0 |
Δ E \Delta E ΔE | ν C V ( T 2 − T 1 ) νC_V(T_2-T_1) νCV(T2−T1) | ν C V ( T 2 − T 1 ) νC_V(T_2-T_1) νCV(T2−T1) | 0 | p 1 V 1 − p 2 V 2 1 − γ \frac{p_1V_1-p_2V_2}{1-γ} 1−γp1V1−p2V2 |