气体动理论

概率密度

引出

对于如掷骰子时出现的骰子点数这种离散型随机事件的概率,我们非常熟悉。
但描述物体中微观粒子状态的随机变量(如气体分子的位置,速度等)常看作是连续随机变量。为了对这种连续随机变量的某一个区间的概率进行量度,我们引入了概率密度。
下面介绍一维概率密度:

概念

设一维随机变量 x x x的值在区间( x x x x + d x x+\mathrm dx x+dx)中出现的概率为 d p ( x ) \mathrm dp(x) dp(x),可认为 d p ( x ) \mathrm dp(x) dp(x)与区间宽度 d x \mathrm dx dx成正比,即:
d p ( x ) = f ( x ) d x \mathrm dp(x)=f(x)\mathrm dx dp(x)=f(x)dx
式中的 f ( x ) f(x) f(x)叫做 x x x值在此区间上的概率密度,简称 x x x概率密度分布函数,它的物理意义可以理解为 x x x值在其附近单位区间中出现的概率。

理解

若某一物理量 u u u x x x的函数,即 u = u ( x ) u=u(x) u=u(x),那么,因 x x x是随机变量, u u u也是随机变量。而且 x x x的分布函数 f ( x ) f(x) f(x)也是 u u u的分布函数。

归一化

若随机变量 x x x只出现在 ( a , b ) (a,b) (a,b)中,则:
∫ a b f ( x ) d x = 1 \int^{b}_{a}f(x)\mathrm dx=1 abf(x)dx=1

理想气体的压强

我们在中学时就已经知道,压强的微观本质是大量的气体分子碰撞器壁形成的一个持久、不变的力。
下面我们进行理想气体压强公式的推导:
在这里插入图片描述

我们设想一个边长为 x , y , z x,y,z x,y,z的长方体容器,里面有 N N N个质量为 μ μ μ的同类理想气体分子。
设容器中任一个分子的速度为 v i v_i vi v i v_i vi x , y , z x,y,z x,y,z三个坐标轴的投影分别为 v i x , v i y , v i z ) v_{ix},v_{iy},v_{iz}) vix,viy,viz).
假设碰撞为完全弹性碰撞。
我们研究一个气体分子a的碰撞情况,假设a分子与器壁A1发生碰撞后弹回,并与其他分子发生碰撞,由于两个质量相等的质点经完全弹性碰撞时交换速度,从而可以等效为分子a以 − v i x -v_{ix} vix直接飞向器壁A2并于之与之发生碰撞,又以 v i x v_{ix} vix回到A1面再做碰撞。因而a分子与某个器壁两次碰撞的时间间隔为 2 x / v i x 2x/v_{ix} 2x/vix,那么单位时间内a分子与某一器壁碰撞的次数为 v i x / ( 2 x ) v_{ix}/(2x) vix/(2x).故在单位时间内a分子施与某一器壁的总冲量为 2 μ v i x ⋅ v i x 2 x 2μv_{ix}·\frac{v_{ix}}{2x} 2μvix2xvix,也就是平均冲力.
那么所有气体分子该器壁的平均作用力
F ‾ = ∑ i = 1 N 2 μ v i x v i x 2 x = μ x ∑ i = 1 N v i x 2 \overline F=\sum_{i=1}^{N}2μv_{ix}\frac{v_{ix}}{2x}=\frac{μ}{x}\sum_{i=1}^{N}v_{ix}^2 F=i=1N2μvix2xvix=xμi=1Nvix2根据统计平均值的概念,有 ∑ i = 1 N v i x 2 = N v ‾ x 2 \sum_{i=1}^{N}v_{ix}^2=N\overline v_{x}^2 i=1Nvix2=Nvx2
所以上式可以写为 F ‾ = N μ x v ‾ i x 2 = N μ v ˉ 2 3 x = 2 N ε ˉ t 3 x \overline F=\frac{Nμ}{x}\overline v_{ix}^2=\frac{Nμ\bar v^2}{3x}=\frac{2N\bar ε_t}{3x} F=xNμvix2=3xNμvˉ2=3x2Nεˉt最后得出压强的表达式:
p = F ‾ y z = N μ v ˉ 2 3 x = 2 N ε ˉ t 3 x y z = N μ v ˉ 2 3 x = 2 N ε ˉ t 3 V = 2 3 n ε ˉ t (1) p=\frac{\overline F}{yz}=\frac{Nμ\bar v^2}{3x}=\frac{2N\bar ε_t}{3xyz}=\frac{Nμ\bar v^2}{3x}=\frac{2N\bar ε_t}{3V}=\frac{2}{3}n\bar ε_t\tag{1} p=yzF=3xNμvˉ2=3xyz2Nεˉt=3xNμvˉ2=3V2Nεˉt=32nεˉt(1)

温度的微观本质

温度的微观解释

根据理想气体状态方程
p V = m M R T pV=\frac{m}{M}RT pV=MmRT可得到理想气体状态方程的另一种重要形式
p = N V R N 0 T = n k T (2) p=\frac{N}{V}\frac{R}{N_0}{T}=nkT\tag{2} p=VNN0RT=nkT(2) N 0 = 6.22 × 1 0 23 m o l − 1 N_0=6.22\times10^{23}mol^{-1} N0=6.22×1023mol1,k为玻尔兹曼常量 k = R N 0 = 1.38 × 1 0 − 23 J ⋅ K − 1 k=\frac{R}{N_0}=1.38\times10^{-23}J·K^{-1} k=N0R=1.38×1023JK1
将此式与压强公式联立(即⑵与⑴联立),得:
ε ˉ t = 3 2 k T (3) \bar ε_t=\frac{3}{2}kT\tag{3} εˉt=23kT(3)
可见,理想气体分子热运动的平均平动动能与温度成正比。
温度是大量分子热运动剧烈程度的量度,是大量分子热运动的集中体现

应该注意的点

  1. 温度与大量分子的平均平动动能相联系,具有统计意义,它是大量分子无规则运动的平均结果,对于单个分子或少量分子谈温度是没有意义的。
  2. 对于式⑶,我们可以看到,当 T = 0 T=0 T=0时, ε ˉ t = 0 \bar ε_t=0 εˉt=0,即分子的平均平动动能为0,分子不运动了,这是一个错误的推论。因为热力学的零度不可能达到,而且在气体未达到零度之前已经变为液体或固体,这时理想气体状态方程早已不再成立。所以我们可以确定的是,分子的热运动是永不停歇的。

方均根速率

我们可以知道,气体分子的平均平动动能:
ε ˉ t = 1 2 μ v ˉ 2 (4) \bar ε_t=\frac{1}{2}μ\bar v^2\tag{4} εˉt=21μvˉ2(4)把此式与⑶联立,得:
v r m s = v ˉ 2 = 3 k T μ = 3 R T M (5) v_{rms}=\sqrt{\bar v^2}=\sqrt{\frac{3kT}{μ}}=\sqrt{\frac{3RT}{M}}\tag{5} vrms=vˉ2 =μ3kT =M3RT (5)
上式表明:
温度越高,气体的相对分子质量越小,方均根速率越大,分子热运动越剧烈。

道尔顿分压定律

一密闭容器中有多种气体。温度确定,各种分子的平均平动动能相等,等于混合气体的分子平均平动动能。 ε ˉ t 1 = ε ˉ t 2 = ε ˉ t 3 = . . . = ε ˉ t i = ε ˉ t \barε_{t1}=\barε_{t2}=\barε_{t3}=...=\barε_{ti}=\barε_{t} εˉt1=εˉt2=εˉt3=...=εˉti=εˉt分子数密度的关系
n = n 1 + n 2 + n 3 + . . . + n i n=n_1+n_2+n_3+...+n_i n=n1+n2+n3+...+ni代入⑴式,得:
p = 2 3 ( n 1 + n 2 + n 3 + . . . + n i ) ε ˉ t = 2 3 n 1 ε ˉ t 1 + 2 3 n 2 ε ˉ t 2 + . . . + 2 3 n i ε ˉ t i = p 1 + p 2 + . . . + p i (6) \begin{align*}p& = \frac{2}{3}(n_1+n_2+n_3+...+n_i)\barε_t\\&=\frac{2}{3}n_1\barε_{t1}+\frac{2}{3}n_2\barε_{t2}+...+\frac{2}{3}n_i\barε_{ti} \\&=p_1+p_2+...+p_i \end{align*}\tag{6} p=32(n1+n2+n3+...+ni)εˉt=32n1εˉt1+32n2εˉt2+...+32niεˉti=p1+p2+...+pi(6)式⑹表明,混合气体的压强等于各种气体的分压强之和,这就是道尔顿分压定律

能量均分定理

自由度

概念

自由度:描述一个物体在空间的位置所需要的独立坐标。
自由度数:确定一个物体在空间的位置所需要的独立坐标的数目。常用 i i i 表示。

不同物体的自由度

单原子分子:3个平动;
双原子分子:3个平动+2个转动;
多原子分子:3个平动+3个转动;

能量均分定理

我们已经知道,平衡态下,理想气体分子的平均平动动能与温度的关系 ε ˉ t = 1 2 μ v ˉ 2 = 3 2 k T \bar ε_t=\frac{1}{2}μ\bar v^2=\frac{3}{2}kT εˉt=21μvˉ2=23kT
v ˉ 2 = v ˉ x 2 + v ˉ y 2 + v ˉ z 2 \bar v^2=\bar v_x^2+\bar v_y^2+\bar v_z^2 vˉ2=vˉx2+vˉy2+vˉz2代入可得:
1 2 μ v ˉ x 2 = 1 2 μ v ˉ y 2 = 1 2 μ v ˉ z 2 = 1 3 ( 1 2 μ v ˉ 2 ) = 1 2 k T \frac{1}{2}μ\bar v_x^2=\frac{1}{2}μ\bar v_y^2=\frac{1}{2}μ\bar v_z^2=\frac{1}{3}\big(\frac{1}{2}μ\bar v^2\big)=\frac{1}{2}kT 21μvˉx2=21μvˉy2=21μvˉz2=31(21μvˉ2)=21kT上式表明,分子的平均平动动能完全均匀地分配在每一个平动自由度上。
在平衡态下,根据等概率原理,气体分子没有哪一种运动形式比其他运动形式占优势。从而,当气体分子有转动时,可以把上述平动动能的统计规律推广到转动自由度上。
在温度为 T T T的平衡态气体系统中,气体分子的任一自由度上的平均动能都相等,为 1 2 k T \frac{1}{2}kT 21kT.
如果用 t t t 表示平动自由度数,用 r r r 表示转动自由度数。则一个气体分子的平均总动能:
ε ˉ k = ε ˉ t + ε ˉ r = ( t + r ) ⋅ 1 2 k T = i 2 k T \barε_k=\barε_t+\barε_r=(t+r)·\frac{1}{2}kT=\frac{i}{2}kT εˉk=εˉt+εˉr=(t+r)21kT=2ikT

不同类气体分子的总动能

单原子分子:t=3,r=0, ε ˉ k = 3 2 k T \barε_k=\frac{3}{2}kT εˉk=23kT
双原子分子:t=3,r=2, ε ˉ k = 5 2 k T \barε_k=\frac{5}{2}kT εˉk=25kT
多原子分子:t=3,r=3, ε ˉ k = 3 k T \barε_k=3kT εˉk=3kT

理想气体的内能

定义

把系统与热现象有关的那部分能量称为内能。

计算

1mol理想气体的内能:
E 0 = N 0 i 2 k T = i 2 R T E_0=N_0\frac{i}{2}kT=\frac{i}{2}RT E0=N02ikT=2iRT
ν ν ν mol 理想气体的内能:
E = ν i 2 R T = m M ⋅ i 2 R T E=ν\frac{i}{2}RT=\frac{m}{M}·\frac{i}{2}RT E=ν2iRT=Mm2iRT

不同类气体分子的内能

单原子分子 E = 3 2 ν R T E=\frac{3}{2}νRT E=23νRT
双原子分子 E = 5 2 ν R T E=\frac{5}{2}νRT E=25νRT
多原子分子 E = 3 ν R T E=3νRT E=3νRT

C V C_V CV C p C_p Cp的联系

C V = d E d T = i 2 R C_V=\frac{\mathrm dE}{\mathrm dT}=\frac{i}{2}R CV=dTdE=2iR C p = C V + R = 2 + i 2 R C_p=C_V+R=\frac{2+i}{2}R Cp=CV+R=22+iR γ = C p C V = 2 + i i γ=\frac{C_p}{C_V}=\frac{2+i}{i} γ=CVCp=i2+i

麦克斯韦速率分布律

三种统计速率

最概然速率

速率分布曲线的极大值处所对应的速率
v p = 2 k T μ = 2 R T M v_p=\sqrt{\frac{2kT}{μ}}=\sqrt{\frac{2RT}{M}} vp=μ2kT =M2RT

平均速率

根据统计平均值的定义所得到的平均速率
v ˉ = 8 k T π μ = 8 R T π M \bar v=\sqrt{\frac{8kT}{πμ}}=\sqrt{\frac{8RT}{πM}} vˉ=πμ8kT =πM8RT

方均根速率

气体分子速率平方的平均值的平方根
v ˉ 2 = 3 k T μ = 3 R T M \sqrt{\bar v^2}=\sqrt{\frac{3kT}{μ}}=\sqrt{\frac{3RT}{M}} vˉ2 =μ3kT =M3RT

气体分子速率分布的实验测定

1934年,我国物理学家葛正权测定了铋(Bi)蒸气分子速率的测定。在这里插入图片描述
O O O 为产生金属铋蒸气分子流的蒸气源,不同速率的分子通过小孔 S 1 S_1 S1 逸出,通过两道狭缝 S 2 S_2 S2 后形成一束很细的分子束。最后射向带有狭缝 S 3 S_3 S3 的可垂直于纸面的中心轴旋转的空心圆筒 R R R。圆筒转动的角速度为 ω ω ω ,直径为 D D D.
当圆筒静止时,若三个狭缝 S 1 , S 2 , S 3 S_1,S_2,S_3 S1,S2,S3 在同一条直线上,那么铋分子束中的各种速率的分子均打在玻璃板G的点p处,在p上镀了一窄条铋。
当圆筒顺时针转动时,圆筒每转动一周,将有一束铋分子通过狭缝,而这其中又有不同速率的铋分子。设速率为 v v v 的铋分子落在玻璃板的 p ′ p \prime p 处, p p ′ ⌢ = l \mathop{pp\prime}\limits^{\frown}=l pp=l ,那么速率为 v v v的铋分子从 S 3 S_3 S3到达玻璃板所移动的距离为 D D D,需要的时间 D / v D/v D/v,在此时间内,圆筒转过的角度 θ = ω D v θ=ω\frac{D}{v} θ=ωvD,则有:
l = D 2 θ = D 2 ω 2 v l=\frac{D}{2}θ=\frac{D^2ω}{2v} l=2Dθ=2vD2ω
只需测出 l l l ,即可求出 v v v 。圆筒不断转动,玻璃板上的不同位置镀了不同厚度的铋,就可以据此测出各个速率的铋分子所占的比例。

气体分子的平均碰撞频率和平均自由程

气体分子的平均碰撞频率

定义

一个分子在单位时间内与其他分子碰撞的次数。

计算

Z ˉ = 2 π d 2 v ˉ n \bar Z=\sqrt{2}πd^2\bar vn Zˉ=2 πd2vˉn

气体分子的平均自由程

定义

分子在相继两次碰撞间所经过的直线路程。

计算

λ ˉ = k T 2 π d 2 p \barλ=\frac{kT}{\sqrt{2}πd^2p} λˉ=2 πd2pkT

二者的关系

λ ˉ = v ˉ Z ˉ \barλ=\frac{\bar v}{\bar Z} λˉ=Zˉvˉ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值