概率密度
引出
对于如掷骰子时出现的骰子点数这种离散型随机事件的概率,我们非常熟悉。
但描述物体中微观粒子状态的随机变量(如气体分子的位置,速度等)常看作是连续随机变量。为了对这种连续随机变量的某一个区间的概率进行量度,我们引入了概率密度。
下面介绍一维概率密度:
概念
设一维随机变量
x
x
x的值在区间(
x
x
x,
x
+
d
x
x+\mathrm dx
x+dx)中出现的概率为
d
p
(
x
)
\mathrm dp(x)
dp(x),可认为
d
p
(
x
)
\mathrm dp(x)
dp(x)与区间宽度
d
x
\mathrm dx
dx成正比,即:
d
p
(
x
)
=
f
(
x
)
d
x
\mathrm dp(x)=f(x)\mathrm dx
dp(x)=f(x)dx
式中的
f
(
x
)
f(x)
f(x)叫做
x
x
x值在此区间上的概率密度,简称
x
x
x的概率密度或分布函数,它的物理意义可以理解为
x
x
x值在其附近单位区间中出现的概率。
理解
若某一物理量 u u u是 x x x的函数,即 u = u ( x ) u=u(x) u=u(x),那么,因 x x x是随机变量, u u u也是随机变量。而且 x x x的分布函数 f ( x ) f(x) f(x)也是 u u u的分布函数。
归一化
若随机变量
x
x
x只出现在
(
a
,
b
)
(a,b)
(a,b)中,则:
∫
a
b
f
(
x
)
d
x
=
1
\int^{b}_{a}f(x)\mathrm dx=1
∫abf(x)dx=1
理想气体的压强
我们在中学时就已经知道,压强的微观本质是大量的气体分子碰撞器壁形成的一个持久、不变的力。
下面我们进行理想气体压强公式的推导:
我们设想一个边长为
x
,
y
,
z
x,y,z
x,y,z的长方体容器,里面有
N
N
N个质量为
μ
μ
μ的同类理想气体分子。
设容器中任一个分子的速度为
v
i
v_i
vi(
v
i
v_i
vi在
x
,
y
,
z
x,y,z
x,y,z三个坐标轴的投影分别为
v
i
x
,
v
i
y
,
v
i
z
)
v_{ix},v_{iy},v_{iz})
vix,viy,viz).
假设碰撞为完全弹性碰撞。
我们研究一个气体分子a的碰撞情况,假设a分子与器壁A1发生碰撞后弹回,并与其他分子发生碰撞,由于两个质量相等的质点经完全弹性碰撞时交换速度,从而可以等效为分子a以
−
v
i
x
-v_{ix}
−vix直接飞向器壁A2并于之与之发生碰撞,又以
v
i
x
v_{ix}
vix回到A1面再做碰撞。因而a分子与某个器壁两次碰撞的时间间隔为
2
x
/
v
i
x
2x/v_{ix}
2x/vix,那么单位时间内a分子与某一器壁碰撞的次数为
v
i
x
/
(
2
x
)
v_{ix}/(2x)
vix/(2x).故在单位时间内a分子施与某一器壁的总冲量为
2
μ
v
i
x
⋅
v
i
x
2
x
2μv_{ix}·\frac{v_{ix}}{2x}
2μvix⋅2xvix,也就是平均冲力.
那么所有气体分子该器壁的平均作用力
F
‾
=
∑
i
=
1
N
2
μ
v
i
x
v
i
x
2
x
=
μ
x
∑
i
=
1
N
v
i
x
2
\overline F=\sum_{i=1}^{N}2μv_{ix}\frac{v_{ix}}{2x}=\frac{μ}{x}\sum_{i=1}^{N}v_{ix}^2
F=i=1∑N2μvix2xvix=xμi=1∑Nvix2根据统计平均值的概念,有
∑
i
=
1
N
v
i
x
2
=
N
v
‾
x
2
\sum_{i=1}^{N}v_{ix}^2=N\overline v_{x}^2
∑i=1Nvix2=Nvx2
所以上式可以写为
F
‾
=
N
μ
x
v
‾
i
x
2
=
N
μ
v
ˉ
2
3
x
=
2
N
ε
ˉ
t
3
x
\overline F=\frac{Nμ}{x}\overline v_{ix}^2=\frac{Nμ\bar v^2}{3x}=\frac{2N\bar ε_t}{3x}
F=xNμvix2=3xNμvˉ2=3x2Nεˉt最后得出压强的表达式:
p
=
F
‾
y
z
=
N
μ
v
ˉ
2
3
x
=
2
N
ε
ˉ
t
3
x
y
z
=
N
μ
v
ˉ
2
3
x
=
2
N
ε
ˉ
t
3
V
=
2
3
n
ε
ˉ
t
(1)
p=\frac{\overline F}{yz}=\frac{Nμ\bar v^2}{3x}=\frac{2N\bar ε_t}{3xyz}=\frac{Nμ\bar v^2}{3x}=\frac{2N\bar ε_t}{3V}=\frac{2}{3}n\bar ε_t\tag{1}
p=yzF=3xNμvˉ2=3xyz2Nεˉt=3xNμvˉ2=3V2Nεˉt=32nεˉt(1)
温度的微观本质
温度的微观解释
根据理想气体状态方程
p
V
=
m
M
R
T
pV=\frac{m}{M}RT
pV=MmRT可得到理想气体状态方程的另一种重要形式
p
=
N
V
R
N
0
T
=
n
k
T
(2)
p=\frac{N}{V}\frac{R}{N_0}{T}=nkT\tag{2}
p=VNN0RT=nkT(2)
N
0
=
6.22
×
1
0
23
m
o
l
−
1
N_0=6.22\times10^{23}mol^{-1}
N0=6.22×1023mol−1,k为玻尔兹曼常量
k
=
R
N
0
=
1.38
×
1
0
−
23
J
⋅
K
−
1
k=\frac{R}{N_0}=1.38\times10^{-23}J·K^{-1}
k=N0R=1.38×10−23J⋅K−1
将此式与压强公式联立(即⑵与⑴联立),得:
ε
ˉ
t
=
3
2
k
T
(3)
\bar ε_t=\frac{3}{2}kT\tag{3}
εˉt=23kT(3)
可见,理想气体分子热运动的平均平动动能与温度成正比。
温度是大量分子热运动剧烈程度的量度,是大量分子热运动的集中体现。
应该注意的点
- 温度与大量分子的平均平动动能相联系,具有统计意义,它是大量分子无规则运动的平均结果,对于单个分子或少量分子谈温度是没有意义的。
- 对于式⑶,我们可以看到,当 T = 0 T=0 T=0时, ε ˉ t = 0 \bar ε_t=0 εˉt=0,即分子的平均平动动能为0,分子不运动了,这是一个错误的推论。因为热力学的零度不可能达到,而且在气体未达到零度之前已经变为液体或固体,这时理想气体状态方程早已不再成立。所以我们可以确定的是,分子的热运动是永不停歇的。
方均根速率
我们可以知道,气体分子的平均平动动能:
ε
ˉ
t
=
1
2
μ
v
ˉ
2
(4)
\bar ε_t=\frac{1}{2}μ\bar v^2\tag{4}
εˉt=21μvˉ2(4)把此式与⑶联立,得:
v
r
m
s
=
v
ˉ
2
=
3
k
T
μ
=
3
R
T
M
(5)
v_{rms}=\sqrt{\bar v^2}=\sqrt{\frac{3kT}{μ}}=\sqrt{\frac{3RT}{M}}\tag{5}
vrms=vˉ2=μ3kT=M3RT(5)
上式表明:
温度越高,气体的相对分子质量越小,方均根速率越大,分子热运动越剧烈。
道尔顿分压定律
一密闭容器中有多种气体。温度确定,各种分子的平均平动动能相等,等于混合气体的分子平均平动动能。
ε
ˉ
t
1
=
ε
ˉ
t
2
=
ε
ˉ
t
3
=
.
.
.
=
ε
ˉ
t
i
=
ε
ˉ
t
\barε_{t1}=\barε_{t2}=\barε_{t3}=...=\barε_{ti}=\barε_{t}
εˉt1=εˉt2=εˉt3=...=εˉti=εˉt分子数密度的关系
n
=
n
1
+
n
2
+
n
3
+
.
.
.
+
n
i
n=n_1+n_2+n_3+...+n_i
n=n1+n2+n3+...+ni代入⑴式,得:
p
=
2
3
(
n
1
+
n
2
+
n
3
+
.
.
.
+
n
i
)
ε
ˉ
t
=
2
3
n
1
ε
ˉ
t
1
+
2
3
n
2
ε
ˉ
t
2
+
.
.
.
+
2
3
n
i
ε
ˉ
t
i
=
p
1
+
p
2
+
.
.
.
+
p
i
(6)
\begin{align*}p& = \frac{2}{3}(n_1+n_2+n_3+...+n_i)\barε_t\\&=\frac{2}{3}n_1\barε_{t1}+\frac{2}{3}n_2\barε_{t2}+...+\frac{2}{3}n_i\barε_{ti} \\&=p_1+p_2+...+p_i \end{align*}\tag{6}
p=32(n1+n2+n3+...+ni)εˉt=32n1εˉt1+32n2εˉt2+...+32niεˉti=p1+p2+...+pi(6)式⑹表明,混合气体的压强等于各种气体的分压强之和,这就是道尔顿分压定律。
能量均分定理
自由度
概念
自由度:描述一个物体在空间的位置所需要的独立坐标。
自由度数:确定一个物体在空间的位置所需要的独立坐标的数目。常用
i
i
i 表示。
不同物体的自由度
单原子分子:3个平动;
双原子分子:3个平动+2个转动;
多原子分子:3个平动+3个转动;
能量均分定理
我们已经知道,平衡态下,理想气体分子的平均平动动能与温度的关系
ε
ˉ
t
=
1
2
μ
v
ˉ
2
=
3
2
k
T
\bar ε_t=\frac{1}{2}μ\bar v^2=\frac{3}{2}kT
εˉt=21μvˉ2=23kT又
v
ˉ
2
=
v
ˉ
x
2
+
v
ˉ
y
2
+
v
ˉ
z
2
\bar v^2=\bar v_x^2+\bar v_y^2+\bar v_z^2
vˉ2=vˉx2+vˉy2+vˉz2代入可得:
1
2
μ
v
ˉ
x
2
=
1
2
μ
v
ˉ
y
2
=
1
2
μ
v
ˉ
z
2
=
1
3
(
1
2
μ
v
ˉ
2
)
=
1
2
k
T
\frac{1}{2}μ\bar v_x^2=\frac{1}{2}μ\bar v_y^2=\frac{1}{2}μ\bar v_z^2=\frac{1}{3}\big(\frac{1}{2}μ\bar v^2\big)=\frac{1}{2}kT
21μvˉx2=21μvˉy2=21μvˉz2=31(21μvˉ2)=21kT上式表明,分子的平均平动动能完全均匀地分配在每一个平动自由度上。
在平衡态下,根据等概率原理,气体分子没有哪一种运动形式比其他运动形式占优势。从而,当气体分子有转动时,可以把上述平动动能的统计规律推广到转动自由度上。
在温度为
T
T
T的平衡态气体系统中,气体分子的任一自由度上的平均动能都相等,为
1
2
k
T
\frac{1}{2}kT
21kT.
如果用
t
t
t 表示平动自由度数,用
r
r
r 表示转动自由度数。则一个气体分子的平均总动能:
ε
ˉ
k
=
ε
ˉ
t
+
ε
ˉ
r
=
(
t
+
r
)
⋅
1
2
k
T
=
i
2
k
T
\barε_k=\barε_t+\barε_r=(t+r)·\frac{1}{2}kT=\frac{i}{2}kT
εˉk=εˉt+εˉr=(t+r)⋅21kT=2ikT
不同类气体分子的总动能
单原子分子:t=3,r=0,
ε
ˉ
k
=
3
2
k
T
\barε_k=\frac{3}{2}kT
εˉk=23kT;
双原子分子:t=3,r=2,
ε
ˉ
k
=
5
2
k
T
\barε_k=\frac{5}{2}kT
εˉk=25kT;
多原子分子:t=3,r=3,
ε
ˉ
k
=
3
k
T
\barε_k=3kT
εˉk=3kT;
理想气体的内能
定义
把系统与热现象有关的那部分能量称为内能。
计算
1mol理想气体的内能:
E
0
=
N
0
i
2
k
T
=
i
2
R
T
E_0=N_0\frac{i}{2}kT=\frac{i}{2}RT
E0=N02ikT=2iRT
ν
ν
ν mol 理想气体的内能:
E
=
ν
i
2
R
T
=
m
M
⋅
i
2
R
T
E=ν\frac{i}{2}RT=\frac{m}{M}·\frac{i}{2}RT
E=ν2iRT=Mm⋅2iRT
不同类气体分子的内能
单原子分子:
E
=
3
2
ν
R
T
E=\frac{3}{2}νRT
E=23νRT;
双原子分子:
E
=
5
2
ν
R
T
E=\frac{5}{2}νRT
E=25νRT;
多原子分子:
E
=
3
ν
R
T
E=3νRT
E=3νRT;
与 C V C_V CV和 C p C_p Cp的联系
C V = d E d T = i 2 R C_V=\frac{\mathrm dE}{\mathrm dT}=\frac{i}{2}R CV=dTdE=2iR C p = C V + R = 2 + i 2 R C_p=C_V+R=\frac{2+i}{2}R Cp=CV+R=22+iR γ = C p C V = 2 + i i γ=\frac{C_p}{C_V}=\frac{2+i}{i} γ=CVCp=i2+i
麦克斯韦速率分布律
三种统计速率
最概然速率
速率分布曲线的极大值处所对应的速率
v
p
=
2
k
T
μ
=
2
R
T
M
v_p=\sqrt{\frac{2kT}{μ}}=\sqrt{\frac{2RT}{M}}
vp=μ2kT=M2RT
平均速率
根据统计平均值的定义所得到的平均速率
v
ˉ
=
8
k
T
π
μ
=
8
R
T
π
M
\bar v=\sqrt{\frac{8kT}{πμ}}=\sqrt{\frac{8RT}{πM}}
vˉ=πμ8kT=πM8RT
方均根速率
气体分子速率平方的平均值的平方根
v
ˉ
2
=
3
k
T
μ
=
3
R
T
M
\sqrt{\bar v^2}=\sqrt{\frac{3kT}{μ}}=\sqrt{\frac{3RT}{M}}
vˉ2=μ3kT=M3RT
气体分子速率分布的实验测定
1934年,我国物理学家葛正权测定了铋(Bi)蒸气分子速率的测定。
O
O
O 为产生金属铋蒸气分子流的蒸气源,不同速率的分子通过小孔
S
1
S_1
S1 逸出,通过两道狭缝
S
2
S_2
S2 后形成一束很细的分子束。最后射向带有狭缝
S
3
S_3
S3 的可垂直于纸面的中心轴旋转的空心圆筒
R
R
R。圆筒转动的角速度为
ω
ω
ω ,直径为
D
D
D.
当圆筒静止时,若三个狭缝
S
1
,
S
2
,
S
3
S_1,S_2,S_3
S1,S2,S3 在同一条直线上,那么铋分子束中的各种速率的分子均打在玻璃板G的点p处,在p上镀了一窄条铋。
当圆筒顺时针转动时,圆筒每转动一周,将有一束铋分子通过狭缝,而这其中又有不同速率的铋分子。设速率为
v
v
v 的铋分子落在玻璃板的
p
′
p \prime
p′ 处,
p
p
′
⌢
=
l
\mathop{pp\prime}\limits^{\frown}=l
pp′⌢=l ,那么速率为
v
v
v的铋分子从
S
3
S_3
S3到达玻璃板所移动的距离为
D
D
D,需要的时间
D
/
v
D/v
D/v,在此时间内,圆筒转过的角度
θ
=
ω
D
v
θ=ω\frac{D}{v}
θ=ωvD,则有:
l
=
D
2
θ
=
D
2
ω
2
v
l=\frac{D}{2}θ=\frac{D^2ω}{2v}
l=2Dθ=2vD2ω
只需测出
l
l
l ,即可求出
v
v
v 。圆筒不断转动,玻璃板上的不同位置镀了不同厚度的铋,就可以据此测出各个速率的铋分子所占的比例。
气体分子的平均碰撞频率和平均自由程
气体分子的平均碰撞频率
定义
一个分子在单位时间内与其他分子碰撞的次数。
计算
Z ˉ = 2 π d 2 v ˉ n \bar Z=\sqrt{2}πd^2\bar vn Zˉ=2πd2vˉn
气体分子的平均自由程
定义
分子在相继两次碰撞间所经过的直线路程。
计算
λ ˉ = k T 2 π d 2 p \barλ=\frac{kT}{\sqrt{2}πd^2p} λˉ=2πd2pkT
二者的关系
λ ˉ = v ˉ Z ˉ \barλ=\frac{\bar v}{\bar Z} λˉ=Zˉvˉ