循环过程
定义
物质系统从某一状态出发,经历一系列状态变化后,又回到原来出发时的状态,这样的过程叫做循环过程。(简称循环)
循环中的物质系统成为工作物质。(简称工质)
特征
循环过程,内能没有改变,即 Δ E = 0 \Delta E=0 ΔE=0。
分类
正循环
在
p
−
V
p-V
p−V图上,沿顺时针方向进行的循环;
应用: 热机的能量转化。
工作原理: 高温热源的热量
Q
1
Q_1
Q1一部分转化为功,剩余的热量
Q
2
Q_2
Q2传递到低温热源。
热机效率:
η
=
W
Q
1
=
Q
1
−
Q
2
Q
1
=
1
−
Q
2
Q
1
η=\frac{W}{Q_1}=\frac{Q_1-Q_2}{Q_1}=1-\frac{Q_2}{Q_1}
η=Q1W=Q1Q1−Q2=1−Q1Q2
逆循环
在
p
−
V
p-V
p−V图上,沿逆时针方向进行的循环;
应用: 制冷剂的能量转化。
工作原理: 向高温热源放出的热量
Q
1
Q_1
Q1等于工质从低温热源中吸收的热量
Q
2
Q_2
Q2和外界对工质所做的功
W
W
W之和。
制冷系数:
ω
=
Q
2
W
=
Q
2
Q
1
−
Q
2
ω=\frac{Q_2}{W}=\frac{Q_2}{Q_1-Q_2}
ω=WQ2=Q1−Q2Q2
卡诺循环
四过程
a->b: 等温膨胀,工质从外界吸收的热量为
Q
a
b
=
ν
R
T
1
ln
V
2
V
1
Q_{ab}=νRT_1\ln\frac{V_2}{V_1}
Qab=νRT1lnV1V2
b->c: 绝热过程,工质与外界没有热交换。
c->d: 等温压缩,工质从外界吸收的热量为
Q
c
d
=
ν
R
T
2
ln
V
4
V
3
Q_{cd}=νRT_2\ln\frac{V_4}{V_3}
Qcd=νRT2lnV3V4
d->a: 绝热过程,工质与外界没有热交换。
在整个循环过程中,工质从外界吸收的热量
Q
1
=
Q
a
b
Q_1=Q_{ab}
Q1=Qab,工质向外界放出的热量为
Q
2
=
−
Q
c
d
Q_2=-Q_{cd}
Q2=−Qcd
效率计算
η
卡
=
1
−
Q
2
Q
1
=
1
−
ν
R
T
2
ln
V
3
V
4
ν
R
T
1
ln
V
2
V
1
=
1
−
T
2
ln
V
3
V
4
T
1
ln
V
2
V
1
η_卡=1-\frac{Q_2}{Q_1}=1-\frac{νRT_2\ln\frac{V_3}{V_4}}{νRT_1\ln\frac{V_2}{V_1}}=1-\frac{T_2\ln\frac{V_3}{V_4}}{T_1\ln\frac{V_2}{V_1}}
η卡=1−Q1Q2=1−νRT1lnV1V2νRT2lnV4V3=1−T1lnV1V2T2lnV4V3
又因为b->c过程中,
T
1
V
2
γ
−
1
=
T
2
V
3
γ
−
1
T_1V_2^{γ-1}=T_2V_3^{γ-1}
T1V2γ−1=T2V3γ−1
d->a过程中,
T
2
V
4
γ
−
1
=
T
1
V
1
γ
−
1
T_2V_4^{γ-1}=T_1V_1^{γ-1}
T2V4γ−1=T1V1γ−1
两式相比,得:
V
2
V
1
=
V
3
V
4
\frac{V_2}{V_1}=\frac{V_3}{V_4}
V1V2=V4V3
所以:
η
卡
=
1
−
T
2
T
1
η_卡=1-\frac{T_2}{T_1}
η卡=1−T1T2
总结
- 卡诺热机的效率与物质无关;
- 卡诺热机的效率只与两个热源的温度有关;
- 卡诺制冷机的制冷系数 ω 卡 = Q 2 W = Q 2 Q 1 − Q 2 = T 2 T 1 − T 2 ω_卡=\frac{Q_2}{W}=\frac{Q_2}{Q_1-Q_2}=\frac{T_2}{T_1-T_2} ω卡=WQ2=Q1−Q2Q2=T1−T2T2
热力学第二定律
自发过程
自然界中不受外界影响而能够自动进行的过程。
孤立系统从非平衡态自动地向平衡态过渡的过程;
可逆过程与不可逆过程
热力学第二定律的两种表述
克劳修斯表述
热量不能自动地从低温物体传给高温物体;
开尔文表述
不可能从单一热源吸取热量,使之完全转化为功而不引起其他变化。
两种表述具有等效性
我们这里用反正法证明。即一种表述不成立,可以推出另外一种表述也不成立。
-
如果克劳修斯表述不成立,那么热量可以自动地从低温物体传给高温物体。于是,就可以制成不需外界做功而把热量从低温传给高温物体的机器,称为理想制冷机。将其与卡诺热机组成联合机组。
-
如果开尔文表述不成立,那么可以从单一热源吸取热量,使之完全转化为功。于是,就可以制成不需要低温热源的理想热机。将其与制冷机组成联合机组。
卡诺定理
卡诺循环是一个理想的可逆循环,不可逆热机的效率低于可逆热机的效率, η 不可逆 < 1 − T 2 T 1 η_{不可逆}<1-\frac{T_2}{T_1} η不可逆<1−T1T2。
数学表达式
η 卡 ⩽ 1 − T 2 T 1 η_卡\leqslant1-\frac{T_2}{T_1} η卡⩽1−T1T2
总结
卡诺定理给出了热机效率的极限,同时也指出了提高热机效率的途径:
- 尽可能减少摩擦,漏气,散热等各种耗散,使不可逆热机接近可逆热机;
- 提高高、低温热源的温度差。一般提高高温热源的温度。