热力学--循环过程与卡诺循环

循环过程

定义

物质系统从某一状态出发,经历一系列状态变化后,又回到原来出发时的状态,这样的过程叫做循环过程。(简称循环
循环中的物质系统成为工作物质。(简称工质

特征

循环过程,内能没有改变,即 Δ E = 0 \Delta E=0 ΔE=0

分类

正循环

p − V p-V pV图上,沿顺时针方向进行的循环;
在这里插入图片描述

应用: 热机的能量转化。
在这里插入图片描述

工作原理: 高温热源的热量 Q 1 Q_1 Q1一部分转化为功,剩余的热量 Q 2 Q_2 Q2传递到低温热源。
热机效率: η = W Q 1 = Q 1 − Q 2 Q 1 = 1 − Q 2 Q 1 η=\frac{W}{Q_1}=\frac{Q_1-Q_2}{Q_1}=1-\frac{Q_2}{Q_1} η=Q1W=Q1Q1Q2=1Q1Q2

逆循环

p − V p-V pV图上,沿逆时针方向进行的循环;
在这里插入图片描述

应用: 制冷剂的能量转化。
在这里插入图片描述

工作原理: 向高温热源放出的热量 Q 1 Q_1 Q1等于工质从低温热源中吸收的热量 Q 2 Q_2 Q2和外界对工质所做的功 W W W之和。
制冷系数: ω = Q 2 W = Q 2 Q 1 − Q 2 ω=\frac{Q_2}{W}=\frac{Q_2}{Q_1-Q_2} ω=WQ2=Q1Q2Q2

卡诺循环

在这里插入图片描述

四过程

a->b: 等温膨胀,工质从外界吸收的热量为 Q a b = ν R T 1 ln ⁡ V 2 V 1 Q_{ab}=νRT_1\ln\frac{V_2}{V_1} Qab=νRT1lnV1V2
b->c: 绝热过程,工质与外界没有热交换。
c->d: 等温压缩,工质从外界吸收的热量为 Q c d = ν R T 2 ln ⁡ V 4 V 3 Q_{cd}=νRT_2\ln\frac{V_4}{V_3} Qcd=νRT2lnV3V4
d->a: 绝热过程,工质与外界没有热交换。
在整个循环过程中,工质从外界吸收的热量 Q 1 = Q a b Q_1=Q_{ab} Q1=Qab,工质向外界放出的热量为 Q 2 = − Q c d Q_2=-Q_{cd} Q2=Qcd
效率计算
η 卡 = 1 − Q 2 Q 1 = 1 − ν R T 2 ln ⁡ V 3 V 4 ν R T 1 ln ⁡ V 2 V 1 = 1 − T 2 ln ⁡ V 3 V 4 T 1 ln ⁡ V 2 V 1 η_卡=1-\frac{Q_2}{Q_1}=1-\frac{νRT_2\ln\frac{V_3}{V_4}}{νRT_1\ln\frac{V_2}{V_1}}=1-\frac{T_2\ln\frac{V_3}{V_4}}{T_1\ln\frac{V_2}{V_1}} η=1Q1Q2=1νRT1lnV1V2νRT2lnV4V3=1T1lnV1V2T2lnV4V3
又因为b->c过程中, T 1 V 2 γ − 1 = T 2 V 3 γ − 1 T_1V_2^{γ-1}=T_2V_3^{γ-1} T1V2γ1=T2V3γ1
   d->a过程中, T 2 V 4 γ − 1 = T 1 V 1 γ − 1 T_2V_4^{γ-1}=T_1V_1^{γ-1} T2V4γ1=T1V1γ1
两式相比,得:
V 2 V 1 = V 3 V 4 \frac{V_2}{V_1}=\frac{V_3}{V_4} V1V2=V4V3
所以:
η 卡 = 1 − T 2 T 1 η_卡=1-\frac{T_2}{T_1} η=1T1T2

总结

  1. 卡诺热机的效率与物质无关;
  2. 卡诺热机的效率只与两个热源的温度有关;
  3. 卡诺制冷机的制冷系数 ω 卡 = Q 2 W = Q 2 Q 1 − Q 2 = T 2 T 1 − T 2 ω_卡=\frac{Q_2}{W}=\frac{Q_2}{Q_1-Q_2}=\frac{T_2}{T_1-T_2} ω=WQ2=Q1Q2Q2=T1T2T2

热力学第二定律

自发过程

自然界中不受外界影响而能够自动进行的过程。
孤立系统从非平衡态自动地向平衡态过渡的过程;

可逆过程与不可逆过程

热力学第二定律的两种表述

克劳修斯表述

热量不能自动地从低温物体传给高温物体;

开尔文表述

不可能从单一热源吸取热量,使之完全转化为功而不引起其他变化。

两种表述具有等效性

我们这里用反正法证明。即一种表述不成立,可以推出另外一种表述也不成立。

  1. 如果克劳修斯表述不成立,那么热量可以自动地从低温物体传给高温物体。于是,就可以制成不需外界做功而把热量从低温传给高温物体的机器,称为理想制冷机。将其与卡诺热机组成联合机组。
    在这里插入图片描述

  2. 如果开尔文表述不成立,那么可以从单一热源吸取热量,使之完全转化为功。于是,就可以制成不需要低温热源的理想热机。将其与制冷机组成联合机组。
    在这里插入图片描述

卡诺定理

卡诺循环是一个理想的可逆循环,不可逆热机的效率低于可逆热机的效率, η 不可逆 < 1 − T 2 T 1 η_{不可逆}<1-\frac{T_2}{T_1} η不可逆<1T1T2

数学表达式

η 卡 ⩽ 1 − T 2 T 1 η_卡\leqslant1-\frac{T_2}{T_1} η1T1T2

总结

卡诺定理给出了热机效率的极限,同时也指出了提高热机效率的途径:

  1. 尽可能减少摩擦,漏气,散热等各种耗散,使不可逆热机接近可逆热机;
  2. 提高高、低温热源的温度差。一般提高高温热源的温度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值