Transformer详细解读(通俗易懂,比较细节,基于论文《Attention Is All You Need》)

说明:1.本文章图片源于论文截图、个人绘制和其他标明出处的截图;2.比较基础的术语和操作在本文用【】强调,会做一些解释,如不理解请查阅其他资料~

1 编码器-解码器架构

        这里对应论文中的3.1 Encoder and Decoder Stacks,主要是对编码器和解码器的架构做简单说明,针对很多层的实现细节并不在本部分详细介绍。

1.1 这个架构的作用

        编码器的输入叫,解码器的输入叫目标,训练的目的在于让源能够转换成目标。

        编码器将源(可能是一个句子)映射到潜空间(更低维度的空间),比如把一个句子中的每个词都映射到低维空间的一个向量上,这样做的好处是可以方便学习不同词之间的语义关联。

(这里多赘述一下,看不懂可跳过:我们可以思考如何把一个词映射为一个向量,最简单的考虑就是独热向量,也就是设计一个m维的向量,这个m表示了词语的数量,假设猫语这个语言体系一共有100个词,那么表示猫语中的每个词就需要100维的向量来表示,全部用0或1来填充。

但是这样表示并不好,因为所有向量都是正交的,很难计算相似度。计算相似度主要采取求内积的方式,但正交向量之间的内积不是0就是1,很难表示0.5,0.9这样的相似度。

所以,可以将词向量从独热向量映射成一个维度比较低的向量,这个新向量不只是用0和1来表示,因此可以计算更多相似度,再加上维度比较低,计算也快。这个新向量所在的空间就是潜空间。

编码器就是把源映射到潜空间,并学习词向量之间的语义关联。)

        解码器就是根据编码器学到的信息,生成目标序列。

        简单来讲,编码器学习如何抽取、表示原始数据的潜在关联,而解码器学习如何生成符合要求的目标数据。

1.2 编码器如何设计

        这段文字是论文中关于编码器部分的简单描述,这里基于以上内容做解读。可以结合下面的图片来理解。

        图片中,左边是编码器,由6个块组成,每个块就是图片中展示的那个样子。

        这个块中有两个层,第一个层叫【多头注意力机制】,即最下面那个橙色的层,第二个层是蓝色的Feed Forward层,每个层后面那个黄色的东西是layerNorm,即【层归一化】。而仔细观察图片会发现,橙色和蓝色方块的旁边还有一条“岔路”,这是【残差连接】操作。

下面解释一下LayerNorm是什么以及为什么选择它————————————————————

先通过与BatchNorm进行对比来理解LayerNorm的本质。

 

对于BatchNorm:

        在二维情况下,矩阵的一行表示一个样本,归一化操作的对象是一列(不同样本的同一个特征),所谓归一化可以简单理解为标准化(实际上还可以学习“缩放”和“平移”的参数,想进一步了解可查阅其他资料,这里可以先简单理解为标准化)。

        Transformer一般处理的是三维的张量,每一层(如红色所示)表示一个样本,归一化操作的对象是形如紫色所示的“片”。仍然是对不同样本的同一个特征做归一化。

对于LayerNorm

        二维情况下,每行代表一个样本,归一化操作的对象是矩阵的一行,即一个样本内部进行标准化操作。

        三维情况下,仍是每层代表一个样本,归一化操作的对象是形如紫色的一层,即在一个样本内部进行标准化操作。

为什么Transformer选择了LayerNorm?

        咱们先回忆一下标准化操作是啥东西。比如x1,x2,x3,x4,x5去进行标准化操作,就是算出这五个数的均值μ和标准差σ,然后对每个xi,进行(xi-μ)/σ操作

        对比BatchNorm和LayerNorm,不难发现前者是针对不同样本的同一个特征进行标准化计算,这说明,计算μ和σ,受到所有样本的影响。我们知道,不同样本之间的序列长度是不一样的,经常需要对短序列填充一些0来统一长度,这会对归一化造成计算偏差。

        关于计算偏差这里详细解释一下。

        如图①,紫色是进行BatchNorm的对象,把它拿出来,如图②,不同样本的序列长度也不一样,黑色阴影部分表示不同长度的序列,红色细点区域表示应该填充0的区域,填充后,序列长度才统一。

        所以问题已经很明显了,本来实际有效的区域只是黑色区域,但现在多添加了很多0,一方面,多出来的0使得计算均值的总数变多,均值计算会偏小,另一方面,增加很多0可能会对数据的离散程度造成影响,使得标准差计算产生偏差。

        那么,LayerNorm为什么就不会有上述问题呢?

        这是因为,LayerNorm计算均值和标准差是每个样本内部进行计算的,哪怕样本大小不一样,计算均值和标准差也不会有什么偏差,因为各自玩各自的,哪怕不一样也没关系。

以上解释了LayerNorm是什么以及为什么选择LayerNorm———————————————

1.3 解码器如何设计

<think>嗯,用户问的是“Transformer属于TensorFlow吗?”首先,我需要确认用户的问题意图。可能用户对Transformer模型和TensorFlow框架的关系不太清楚,或者是在学习过程中遇到了混淆。 首先,我应该回忆一下Transformer的基本概念。Transformer是一种由Google在2017年提出的神经网络架构,主要用于自然语言处理任务,比如机器翻译。它的核心是自注意力机制,能够处理序列数据,并且在很多任务上取代了传统的RNN和LSTM。 接下来,TensorFlow是Google开发的开源机器学习框架,用户之前的问题中已经了解了TensorFlow的功能。现在的问题是,Transformer是否属于TensorFlow。这里需要明确,Transformer是一个模型架构,而TensorFlow是一个框架,用来实现和训练各种模型,包括Transformer。 用户可能混淆了模型架构和框架的关系。比如,像BERT、GPT这些模型都是基于Transformer架构构建的,但它们可以在不同的框架中实现,比如TensorFlow或PyTorch。因此,Transformer本身并不属于TensorFlow,而是可以在TensorFlow中实现。 然后,我需要检查是否有官方实现的例子。比如,TensorFlow的官方文档或库中是否有Transformer的实现。例如,TensorFlow提供了Tensor2Tensor库,其中包含了Transformer的代码。另外,Hugging Face的Transformers库也支持TensorFlow,用户可以在TensorFlow中使用预训练的Transformer模型。 可能用户还关心如何用TensorFlow构建Transformer模型,或者是否必须使用TensorFlow才能使用Transformer。这时候需要说明,Transformer是架构,可以在多种框架中实现,TensorFlow只是其中之一。 另外,用户可能有更深层次的需求,比如他们是否需要在TensorFlow中使用Transformer,或者寻找相关的教程。这时候可以建议用户查阅TensorFlow的官方文档,或者提供一些示例代码链接。 最后,确保回答准确无误,避免技术术语的混淆,用通俗易懂的中文解释两者的关系,并给出实际应用的例子,帮助用户更好地理解。</think>### Transformer 与 TensorFlow 的关系 **简单回答**: **Transformer 是一种神经网络架构**,而 **TensorFlow 是一个深度学习框架**。Transformer 本身不属于 TensorFlow,但可以通过 TensorFlow 实现、训练和部署。 --- ### 具体说明 #### 1. **Transformer 的起源** - Transformer 是 2017 年由 Google 团队在论文《[Attention Is All You Need](https://arxiv.org/abs/1706.03762)》中提出的模型架构,其核心是 **自注意力机制(Self-Attention)**,最初用于机器翻译任务。 - 它是一个**通用的架构设计**,不依赖于任何特定框架。 #### 2. **TensorFlow 对 Transformer 的支持** 虽然 Transformer 不“属于” TensorFlow,但 TensorFlow 提供了以下支持: - **官方实现**:TensorFlow 的 [Tensor2Tensor](https://github.com/tensorflow/tensor2tensor) 库中最早实现了 Transformer。 - **高阶 API**:通过 `tf.keras` 或 `TensorFlow Hub` 可直接调用预训练的 Transformer 模型(如 BERT)。 - **灵活构建**:用户可以用 TensorFlow 自定义 Transformer 的编码器、解码器、注意力层等组件。 例如,以下代码片段展示了用 TensorFlow 实现自注意力机制的简化版本: ```python import tensorflow as tf class SelfAttention(tf.keras.layers.Layer): def __init__(self, d_model): super(SelfAttention, self).__init__() self.d_model = d_model self.Wq = tf.keras.layers.Dense(d_model) self.Wk = tf.keras.layers.Dense(d_model) self.Wv = tf.keras.layers.Dense(d_model) def call(self, x): q = self.Wq(x) # 生成查询向量 k = self.Wk(x) # 生成键向量 v = self.Wv(x) # 生成值向量 # 计算注意力权重 attn_weights = tf.matmul(q, k, transpose_b=True) attn_weights = tf.nn.softmax(attn_weights / tf.math.sqrt(tf.cast(self.d_model, tf.float32))) # 加权求和 output = tf.matmul(attn_weights, v) return output ``` #### 3. **实际应用场景** 在 TensorFlow 生态中,Transformer 被广泛用于: - **自然语言处理(NLP)**:如 BERT(TensorFlow Hub 提供预训练模型)、GPT 等。 - **多模态任务**:如 Vision Transformer(ViT)用于图像分类。 - **时间序列预测**:通过注意力机制捕捉长期依赖。 --- ### 常见误解澄清 - **误区**:“Transformer = TensorFlow 的某个库”。 **正解**:Transformer 是模型设计,TensorFlow 是实现它的工具之一。 - **误区**:“必须用 TensorFlow 才能使用 Transformer”。 **正解**:Transformer 也可用 PyTorch、JAX 等其他框架实现(如 Hugging Face 的 Transformers 库)。 --- ### 总结 - **Transformer 是架构**,TensorFlow 是工具。 - **TensorFlow 提供了便捷的接口和预训练模型**,帮助用户快速应用 Transformer。 - 如果你需要在 TensorFlow 中使用 Transformer,可参考: - [TensorFlow 官方 Transformer 教程](https://www.tensorflow.org/tutorials/text/transformer) - [TensorFlow Hub 的 BERT 模型](https://tfhub.dev/google/collections/bert/1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值