基于OpenCV的裂缝检测和测量

本文介绍了一种使用OpenCV进行桥梁裂缝检测的方法,包括图像预处理、边缘检测、裂缝连通及量化分析等步骤,并提供了处理流程和效果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用OpenCV检测桥墩表面照片中的裂缝,并测量裂缝的长度和宽度,这是我的毕业设计中最核心的部分。学习OpenCV如何使用并不难,找到正确的处理流程才是关键。所以在此记录、分享一下思路和代码。

处理流程如下:

  1. 图像灰度化
  2. 增加对比度
  3. Canny边缘检测
  4. 用形态学连接临近裂缝
  5. 找出所有连通域,删除非裂缝噪点区域
  6. 对每个连通域提取骨架,测量长度和宽度

代码托管在码云上,详见CrackProcesshttps://gitee.com/Gszekt/CrackProcess

另外,包含了裂缝处理功能的桌面应用同样托管在码云上,详见DrawImagehttps://gitee.com/Gszekt/DrawImage。项目的 Installer 文件夹下有打包好的安装包,有兴趣可以试一下。

下面是处理效果:

源图像
检测裂缝
检测裂缝
滤波后
滤波后
提取骨架和测量
提取骨架和测量
重叠结果
重叠结果

待优化的地方还有许多,尤其是测量。不过大体效果还可以,继续改进吧。

对于Python中的裂缝宽度计算,可以借助一些图像处理算法来实现。根据引用[2]中提供的链接,可以使用目标检测或实例分割的方法来实现裂缝的分割。目标检测可以用于检测图像中的裂缝位置,而实例分割可以更加精确地分割出裂缝的形状。 在目标检测中,可以使用一些常见的深度学习算法,如Faster R-CNN、YOLO或SSD,来检测裂缝的位置。这些算法可以通过训练一个神经网络来学习裂缝的特征,并输出裂缝的边界框。然后,可以通过计算边界框的宽度来得到裂缝的宽度。 而在实例分割中,可以使用一些先进的语义分割算法,如Mask R-CNN、U-Net或FCN,来实现精确的裂缝分割。这些算法可以将裂缝区域像素与其他区域进行分离,从而得到裂缝的形状。然后,可以通过计算裂缝的宽度来量化裂缝的大小。 总结起来,Python中实现裂缝宽度计算,可以借助目标检测或实例分割算法来实现。这些算法可以通过训练一个神经网络或使用预训练的模型来实现裂缝的定位分割,并进一步计算裂缝的宽度。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [基于图像的裂缝分割与裂缝宽度计算(正交骨架线法)](https://blog.csdn.net/Subtlechange/article/details/118523710)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [python基于DeeplabV3Plus开发构建裂缝分割识别系统,并实现裂缝宽度计算测量](https://blog.csdn.net/Together_CZ/article/details/131021816)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 69
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值