数据处理知识点

数据处理

对python数据处理相关的知识点进行总结

1. 常用的数据处理的库有哪些

  1. pandas:提供了数据结构和数据分析工具,支持多种数据格式的读取和写入,如 CSV、JSON、SQL 等。
  2. numpy:提供了高效的数组计算和操作,支持多种数学运算和统计分析。支持多维数组和矩阵运算
  3. matplotlib:提供了数据可视化工具,支持多种图形绘制,如折线图、柱状图、散点图等。
  4. scikit-learn:提供了机器学习算法和工具,支持数据预处理、特征选择、模型训练和评估等。
  5. TensorFlow:提供了深度学习框架和工具,支持神经网络的构建、训练和部署等。

2. pandas库怎么去做切分

## 将一列进行拆分
# 对 Name 列进行拆分,按照空格进行拆分
split_df = df['Name'].str.split()
# 将拆分后的结果保存到 DataFrame 中
split_df = df['Name'].apply(lambda x: x.split())

## 将行列进行切分
# 使用loc方法进行行的切分
row1 = df.loc[0]
# 使用iloc方法进行行的切分
row1 = df.iloc[0]
# 使用loc方法进行列的切分
column1 = df.loc[:, 'A']
# 使用iloc方法进行列的切分
column1 = df.iloc[:, 0]

3. pandas库怎么去做合并

# 合并两个 DataFrame
merged_df = pd.merge(df1, df2, on='A')
# 使用 concat()方法进行合并
concat_df = pd.concat([df1, df2], axis=1)
# 使用 join() 方法进行连接
joined_df = df1.join(df2, on=key)
# 使用 merge_asof() 方法进行合并
merged_df = pd.merge_asof(df1, df2, on=key)

4. numpy库基本操作有哪些

import numpy as np

# 创建一个数组
arr = np.array([1, 2, 3, 4, 5])
# 创建矩阵
m = numpy.mat([[1, 2], [3, 4]])
# 创建张量(Tensor)
numpy.tensor([[[1, 2], [3, 4]], [[5, 6
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值