split_sequence函数:将序列分为多个样本进行单步预测

本文介绍了如何使用LSTM模型处理时序数据,并提供了一个名为split_sequence的函数,用于将数据划分为输入和输出样本。通过示例展示了如何将序列[10, 20, 30, 40, 50]分为多个输入输出对,用于LSTM的训练。该函数接受一个序列和步长参数,返回经过切割的输入X和输出Y的数组。
摘要由CSDN通过智能技术生成

1 作用

用LSTM模型对时序序列预测时,需要将数据分为多个样本,每个样本中将一定步长的数据作输入,一定步长的数据作输出。split_sequence()就可以将数据分为这样的样本。

2 代码 

from numpy import array
def split_sequence(sequence, n_steps):
	X, Y = list(), list()
	for i in range(len(sequence)):
		end_ix = i + n_steps
		if end_ix > len(sequence)-1:
			break
		seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
		X.append(seq_x)
		Y.append(seq_y)
	return array(X), array(Y)

用def函数定义新函数,函数名为split_sequence,输入参数有sequence和n_step,sequence是要处理的数据名, n_step是指输入n_step个步长的数据来进行预测。

def split_sequence(sequence, n_steps):
X, Y = list(), list() #利用list()函数生成空list
for i in range(len(sequence)): #i遍历sequence的下标索引值
end_ix = i + n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值