在大模型架构设计中,Dense(全连接)、MoE(混合专家)和Hybrid-MoE(混合式MoE)是三种主流的参数组织方式,它们在模型容量、计算效率和应用场景上存在显著差异。以下从核心原理、技术特点、优缺点及适用场景进行系统对比:
1. 核心原理对比
架构类型 | 核心思想 | 典型模型 |
---|---|---|
Dense | 所有参数对所有输入生效,每层神经元全连接,统一处理所有输入特征。 | GPT-3、BERT、LLAMA |
MoE | 将模型划分为多个“专家”(子网络),每个输入仅激活部分专家,通过路由机制动态分配任务。 | Switch Transformer、GShard |
Hybrid-MoE | 混合Dense和MoE层:部分层全连接,部分层采用MoE结构,平衡计算效率和模型容量。 | DeepSeek-MoE、Google GLaM |