人工智能 - 大模型Dense、MoE 与 Hybrid-MoE 架构的比较

在大模型架构设计中,Dense(全连接)、MoE(混合专家)和Hybrid-MoE(混合式MoE)是三种主流的参数组织方式,它们在模型容量、计算效率和应用场景上存在显著差异。以下从核心原理、技术特点、优缺点及适用场景进行系统对比:


1. 核心原理对比

架构类型 核心思想 典型模型
Dense 所有参数对所有输入生效,每层神经元全连接,统一处理所有输入特征。 GPT-3、BERT、LLAMA
MoE 将模型划分为多个“专家”(子网络),每个输入仅激活部分专家,通过路由机制动态分配任务。 Switch Transformer、GShard
Hybrid-MoE 混合Dense和MoE层:部分层全连接,部分层采用MoE结构,平衡计算效率和模型容量。 DeepSeek-MoE、Google GLaM
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天机️灵韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值