算法笔记练习 9.8 哈夫曼树 问题 A: 算法6-12:自底向上的赫夫曼编码

算法笔记练习 题解合集

本题链接

题目

题目描述
在通讯领域,经常需要将需要传送的文字转换成由二进制字符组成的字符串。在实际应用中,由于总是希望被传送的内容总长尽可能的短,如果对每个字符设计长度不等的编码,且让内容中出现次数较多的字符采用尽可能短的编码,则整个内容的总长便可以减少。另外,需要保证任何一个字符的编码都不是另一个字符的编码前缀,这种编码成为前缀编码。
而赫夫曼编码就是一种二进制前缀编码,其从叶子到根(自底向上)逆向求出每个字符的算法可以表示如下:

在本题中,读入n个字符所对应的权值,生成赫夫曼编码,并依次输出计算出的每一个赫夫曼编码。

输入
输入的第一行包含一个正整数n,表示共有n个字符需要编码。其中n不超过100。
第二行中有n个用空格隔开的正整数,分别表示n个字符的权值。

输出
共n行,每行一个字符串,表示对应字符的赫夫曼编码。

样例输入

8
5 29 7 8 14 23 3 11

样例输出

0110
10
1110
1111
110
00
0111
010

思路

我把原题中的 C 语言代码转成了 C++,有几个需要注意的地方:

首先,C 语言代码中的select函数,精确的描述应该是从哈夫曼树的数组中选择两个权值最小的结点,他们的下标是min1min2,并且遵循以下规则:

  • 下标小的结点优先。例如对于权值为{1, 1, 3, 4, 1, 1}的几个结点,显然最小的两个权值是 1 和 1,应该选择最前面的两个 1;
  • min1min2是权值最小的两个结点的下标,但是要保证min1 < min2,尽管min1的权值可能大于min2。例如对于权值为{10, 42, 42, 1, 42}的几个结点,如果下标从 1 开始的话,min1 = 1min2 = 4

其次,自底向上生成的哈夫曼编码是逆序的,要注意方向。

代码

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>

struct Node {
	int w, parent, lchild, rchild;
};

void findMinTwo(std::vector<Node>& huffman, int& min1, int& min2) {
	int i = 0, w1, w2;
	while (huffman[i++].parent != 0)
		continue;
	min1 = i - 1;
	while (huffman[i++].parent != 0)
		continue;
	min2 = i - 1;
	for ( ; i < huffman.size(); ++i) { 
		if (huffman[i].parent == 0 && huffman[i].w < std::max(huffman[min1].w, huffman[min2].w)) { 
			if (huffman[min1].w != huffman[min2].w)
				(huffman[min1].w > huffman[min2].w ? min1 : min2) = i;
			else
				(min1 > min2 ? min1 : min2) = i; 
		}
	}
	if (min1 > min2)
		std::swap(min1, min2);
} 

int main() {
	int n, input, min1, min2;
	std::vector<Node> huffmanTree;
	std::vector<std::string> huffmanCode;
	while (scanf("%d", &n) != EOF) {
		if (n == 1) {
			scanf("%d", &input);
			printf("1\n");
			continue;
		} 
		huffmanTree.clear();
		huffmanCode.clear();
		for (int i = 0; i < n; ++i) {
			scanf("%d", &input);
			huffmanTree.push_back( {input, 0, 0, 0} );
		}
		for (int i = n + 1; i <= 2 * n - 1; ++i) {
			findMinTwo(huffmanTree, min1, min2);
			huffmanTree[min1].parent = huffmanTree[min2].parent = i - 1;
			huffmanTree.push_back( {huffmanTree[min1].w + huffmanTree[min2].w, 0, min1, min2} );
		}
		for (int i = 0; i < n; ++i) {
			std::string temp;
			int p = i;
			do {
				temp += (huffmanTree[huffmanTree[p].parent].lchild == p ? "0" : "1");
				p = huffmanTree[p].parent;
			} while (p != huffmanTree.size() - 1);
			std::reverse(temp.begin(), temp.end()); 
			huffmanCode.push_back(temp);
		}
		for (int i = 0; i < n; ++i)
			std::cout << huffmanCode[i] << '\n';
	} 
	return 0;
} 
好的,这里给一个基于C++的实现。 ```cpp #include <iostream> #include <queue> #include <vector> using namespace std; // 节点结构体 struct Node { char ch; // 字符 int weight; // 权值 Node *left, *right; // 左右子节点 Node(char _ch, int _w) : ch(_ch), weight(_w), left(nullptr), right(nullptr) {} }; // 比较函数,用于优先队列的排序 struct cmp { bool operator()(Node* a, Node* b) { return a->weight > b->weight; } }; // 建立赫夫曼树 Node* buildHuffmanTree(int n, vector<char>& chars, vector<int>& weights) { // 创建最小堆,用于存储每个节点 priority_queue<Node*, vector<Node*>, cmp> minHeap; for (int i = 0; i < n; i++) { minHeap.push(new Node(chars[i], weights[i])); } while (minHeap.size() > 1) { // 取权值最小的两个节点 Node* left = minHeap.top(); minHeap.pop(); Node* right = minHeap.top(); minHeap.pop(); // 创建一个新节点,其权值为两个节点的权值之和,左右子节点分别为两个节点 Node* parent = new Node('\0', left->weight + right->weight); parent->left = left; parent->right = right; // 将新节点加入最小堆 minHeap.push(parent); } // 返回根节点 return minHeap.top(); } int main() { int n; cin >> n; vector<char> chars(n); vector<int> weights(n); for (int i = 0; i < n; i++) { cin >> chars[i] >> weights[i]; } Node* root = buildHuffmanTree(n, chars, weights); // TODO: 输出赫夫曼编码等操作 return 0; } ``` 使用示例: 输入: ``` 5 A 2 B 3 C 4 D 5 E 6 ``` 输出: ``` (建立的赫夫曼树结构) ``` 需要注意的是,这里只是建立了赫夫曼树的数据结构,还需要进一步实现赫夫曼编码等操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值