题目
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
示例 1:
输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
解释:
编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
示例 2:
输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]
提示:
1 <= people.length <= 2000
0 <= hi <= 106
0 <= ki < people.length
题目数据确保队列可以被重建
思路
(这题完全没思路,复述一下官方题解)
假设所有人身高都不一样,那么先把所有人的身高按从小到大排序,从身高低的人开始考虑。首先建立一个长度和人数相同的数组 ans
,数组一开始是没有人的,看成全部都是空位。要满足第 i 个人前面有 k 个人比他高,那么当我们把第 i 个人放进去的时候要保证他前面有 k 个空位留给 k个比他高的人即可(如果已经有人在他前面了,这个人不能算成空位)。这样依次放入所有人就结束了。
现在问题是有可能出现身高一样的人,如果两个人身高一样,k 值不一样,那么 k 值相对较大的人应该排在更后面。我们可以把 k 值较大的人想象成更高还是更矮呢?如果更高的话那前面和他身高一样的人就不会被计入 k 了,也就是 k 会不满足要求,所以是更矮。所以只需要在排序的时候先按照身高升序,再按照 k 值降序,后面的步骤是一样的。
时间复杂度:
O
(
n
2
)
O(n^2)
O(n2),放入 ans
的时候需要
O
(
n
2
)
O(n^2)
O(n2)
空间复杂度:
O
(
log
n
)
O(\log n)
O(logn),排序需要的空间
C++ 代码
class Solution {
public:
static bool compare(vector<int> a, vector<int> b) {
return a[0] != b[0] ? a[0] < b[0] : a[1] > b[1];
}
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
int size = people.size();
vector<vector<int>> ans(size, vector<int>(2, -1));
sort(people.begin(), people.end(), compare);
for (int i = 0; i < size; ++i) {
int space = people[i][1], j;
for (j = 0; j < size && space > 0; ++j) {
if (ans[j][0] == -1 || ans[j][0] >= people[i][0])
--space;
}
for (; j < size && ans[j][0] != -1; ++j)
continue;
ans[j][0] = people[i][0];
ans[j][1] = people[i][1];
}
return ans;
}
};