2021牛客多校#1 Increasing Subsequence

题目链接

			https://ac.nowcoder.com/acm/contest/11166/I

题目大意

Alice和Bob在一个大小为 n ( 1 ≤ n ≤ 5000 ) n(1\leq n\leq 5000) n(1n5000) 的排列 P P P上玩游戏,双方轮流选择数字。

每一轮中,当前玩家需要选择一个比之前双方选择过的元素都大的元素。并且若该玩家之前选择了 P i P_i Pi,当前回合选择了 P j P_j Pj,则必须满足 j > i j>i j>i 。若有多种选择,则将等概率的随机选择一个合法的元素。

第一回合的玩家会随机选择一个元素,第二回合会随机选择一个比第一回合选择的数字大的元素。没有合法操作时结束游戏。
求游戏结束时,双方的总游戏回合数期望,答案对 998244353 998244353 998244353取模。

题解

本题可以通过计算期待值求出答案,我们只需用DP算法求出每一步的期待值即可。

设前两个回合选了 P x , P y P_x,P_y Px,Py,下一回合选了 P k P_k Pk
可推出动态方程式为:
p x < p y p_x<p_y px<py
d p [ x ] [ y ] = 1 + 1 c ∑ k > x   p k > p y d p k , y dp[x][y]=1+\tfrac{1}{c}\sum\limits_{k>x \ p_k>p_y}dp_{k,y} dp[x][y]=1+c1k>x pk>pydpk,y
p x > p y p_x>p_y px>py
d p [ x ] [ y ] = 1 + 1 c ∑ k > y   p k > p x d p x , k dp[x][y]=1+\tfrac{1}{c}\sum\limits_{k>y \ p_k>p_x}dp_{x,k} dp[x][y]=1+c1k>y pk>pxdpx,k
因为答案要根据逆元取模,所以添加一个预处理进行打表优化一下。

参考代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5050;
const int mod=998244353;
ll e[N],n;
ll dp[N][N];
ll v[N],cnt[N],sum[N];//sum为前缀方便计算
ll powmod(ll x,ll p)
{
    ll ret=1;
    while(p)
    {
        if(p&1)
            ret=ret*x%mod;
        x=x*x%mod;
        p>>=1;
    }
    return ret;
}
int main()
{
    scanf("%d",&n);
    v[0]=1;
    ll ans=0,s,c;
    for(int i=1;i<=n;i++)
        scanf("%lld",&e[i]);
    for(int i=1;i<=n;i++)
        v[i]=powmod(i,mod-2);//预处理
    for(int i=n;i>=1;i--)
    {
        s=c=0;
        for(int j=n;j>=0;j--)
        {
            if(i==j)continue;
            if(e[i]>e[j])
            {
                dp[i][j]=(s*v[c]+1)%mod;
                sum[j]=(sum[j]+dp[i][j])%mod;
                cnt[j]++;
            }
            else
            {
                dp[i][j]=(sum[j]*v[cnt[j]]+1)%mod;
                s=(s+dp[i][j])%mod;
                c++;
            }
        }
    }
    for(int i=1;i<=n;i++)
        ans=(ans+dp[i][0])%mod;
    ans=ans*v[n]%mod;
    printf("%lld",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值