题目链接
https://ac.nowcoder.com/acm/contest/11166/I
题目大意
Alice和Bob在一个大小为 n ( 1 ≤ n ≤ 5000 ) n(1\leq n\leq 5000) n(1≤n≤5000) 的排列 P P P上玩游戏,双方轮流选择数字。
每一轮中,当前玩家需要选择一个比之前双方选择过的元素都大的元素。并且若该玩家之前选择了 P i P_i Pi,当前回合选择了 P j P_j Pj,则必须满足 j > i j>i j>i 。若有多种选择,则将等概率的随机选择一个合法的元素。
第一回合的玩家会随机选择一个元素,第二回合会随机选择一个比第一回合选择的数字大的元素。没有合法操作时结束游戏。
求游戏结束时,双方的总游戏回合数期望,答案对
998244353
998244353
998244353取模。
题解
本题可以通过计算期待值求出答案,我们只需用DP算法求出每一步的期待值即可。
设前两个回合选了
P
x
,
P
y
P_x,P_y
Px,Py,下一回合选了
P
k
P_k
Pk
可推出动态方程式为:
当
p
x
<
p
y
p_x<p_y
px<py
d
p
[
x
]
[
y
]
=
1
+
1
c
∑
k
>
x
p
k
>
p
y
d
p
k
,
y
dp[x][y]=1+\tfrac{1}{c}\sum\limits_{k>x \ p_k>p_y}dp_{k,y}
dp[x][y]=1+c1k>x pk>py∑dpk,y
当
p
x
>
p
y
p_x>p_y
px>py
d
p
[
x
]
[
y
]
=
1
+
1
c
∑
k
>
y
p
k
>
p
x
d
p
x
,
k
dp[x][y]=1+\tfrac{1}{c}\sum\limits_{k>y \ p_k>p_x}dp_{x,k}
dp[x][y]=1+c1k>y pk>px∑dpx,k
因为答案要根据逆元取模,所以添加一个预处理进行打表优化一下。
参考代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5050;
const int mod=998244353;
ll e[N],n;
ll dp[N][N];
ll v[N],cnt[N],sum[N];//sum为前缀方便计算
ll powmod(ll x,ll p)
{
ll ret=1;
while(p)
{
if(p&1)
ret=ret*x%mod;
x=x*x%mod;
p>>=1;
}
return ret;
}
int main()
{
scanf("%d",&n);
v[0]=1;
ll ans=0,s,c;
for(int i=1;i<=n;i++)
scanf("%lld",&e[i]);
for(int i=1;i<=n;i++)
v[i]=powmod(i,mod-2);//预处理
for(int i=n;i>=1;i--)
{
s=c=0;
for(int j=n;j>=0;j--)
{
if(i==j)continue;
if(e[i]>e[j])
{
dp[i][j]=(s*v[c]+1)%mod;
sum[j]=(sum[j]+dp[i][j])%mod;
cnt[j]++;
}
else
{
dp[i][j]=(sum[j]*v[cnt[j]]+1)%mod;
s=(s+dp[i][j])%mod;
c++;
}
}
}
for(int i=1;i<=n;i++)
ans=(ans+dp[i][0])%mod;
ans=ans*v[n]%mod;
printf("%lld",ans);
}