2021牛客多校#3 24dian

原题链接
		https://ac.nowcoder.com/acm/contest/11254/F

题目大意

给定 n ( 1 ≤ n ≤ 4 ) n(1\leq n\leq 4) n(1n4)张牌,每张牌的点数从 1 1 1 13 13 13,在类似24点的规则下,求能否构造出包含 n n n个变量的表达式,其值为 m ( 1 ≤ m ≤ 1 0 9 ) m(1\leq m\leq 10^9) m(1m109)。与24点规则不同,计算过程中必须出现分数,且最后结果为整数。

题解

因为 n n n的值不超过 4 4 4,所以我们只需列举所有情况,若结果不等于 m m m或不符合规则便舍去。

参考代码

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+9;
vector<double> v,e[N];
int n,m,flag,cnt,ans;
bool w(double x,double y)
{
	if(x>(int)x+1e-9)return 1;
	if(y>(int)y+1e-9)return 1;
	if(x/y>(int)(x/y)+1e-9)return 1;
	return 0;
}
void dfs(int x,int y,vector<double> v)
{
	if(x==n)
	{
		if(fabs(v[0]-m)<1e-8)
		{
			flag++;
			if(y)cnt++;
		}
		return;
	}
	int len=v.size();
	for(int i=0;i<len;i++)
		for(int j=0;j<len;j++)
		{
			if(i==j)continue;
			vector<double> t;
			t.clear();
			for(int h=0;h<len;h++)
				if(h!=i&&h!=j)t.push_back(v[h]);
			t.push_back(v[i]+v[j]);
			dfs(x+1,y,t);
			t.pop_back();
			t.push_back(v[i]-v[j]);
			dfs(x+1,y,t);
			t.pop_back();
			t.push_back(v[i]*v[j]);
			dfs(x+1,y,t);
			t.pop_back();
			t.push_back(v[i]/v[j]);
			dfs(x+1,y|w(v[i],v[j]),t);
			t.pop_back();
		}
}
bool check(vector<double> v)
{
	flag=0,cnt=0;
	dfs(1,0,v);
	if(flag==cnt&&cnt)return 1;
	return 0;
}
void find(int len,int s)
{
	if(len==n+1)
	{
		if(check(v))e[ans++]=v;
		return ;
	}
	for(int i=s;i<=13;i++)
	{
		v.push_back(i);
		find(len+1,i);
		v.pop_back();
	}
}
int main()
{
	scanf("%d%d",&n,&m);
	find(1,1);
	printf("%d\n",ans);
	for(int i=0;i<ans;i++)
	{
		for(int j=0;j<e[i].size();j++)cout<<e[i][j]<<" ";
		puts("");
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值