原题链接
https://ac.nowcoder.com/acm/contest/11254/F
题目大意
给定 n ( 1 ≤ n ≤ 4 ) n(1\leq n\leq 4) n(1≤n≤4)张牌,每张牌的点数从 1 1 1到 13 13 13,在类似24点的规则下,求能否构造出包含 n n n个变量的表达式,其值为 m ( 1 ≤ m ≤ 1 0 9 ) m(1\leq m\leq 10^9) m(1≤m≤109)。与24点规则不同,计算过程中必须出现分数,且最后结果为整数。
题解
因为 n n n的值不超过 4 4 4,所以我们只需列举所有情况,若结果不等于 m m m或不符合规则便舍去。
参考代码
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+9;
vector<double> v,e[N];
int n,m,flag,cnt,ans;
bool w(double x,double y)
{
if(x>(int)x+1e-9)return 1;
if(y>(int)y+1e-9)return 1;
if(x/y>(int)(x/y)+1e-9)return 1;
return 0;
}
void dfs(int x,int y,vector<double> v)
{
if(x==n)
{
if(fabs(v[0]-m)<1e-8)
{
flag++;
if(y)cnt++;
}
return;
}
int len=v.size();
for(int i=0;i<len;i++)
for(int j=0;j<len;j++)
{
if(i==j)continue;
vector<double> t;
t.clear();
for(int h=0;h<len;h++)
if(h!=i&&h!=j)t.push_back(v[h]);
t.push_back(v[i]+v[j]);
dfs(x+1,y,t);
t.pop_back();
t.push_back(v[i]-v[j]);
dfs(x+1,y,t);
t.pop_back();
t.push_back(v[i]*v[j]);
dfs(x+1,y,t);
t.pop_back();
t.push_back(v[i]/v[j]);
dfs(x+1,y|w(v[i],v[j]),t);
t.pop_back();
}
}
bool check(vector<double> v)
{
flag=0,cnt=0;
dfs(1,0,v);
if(flag==cnt&&cnt)return 1;
return 0;
}
void find(int len,int s)
{
if(len==n+1)
{
if(check(v))e[ans++]=v;
return ;
}
for(int i=s;i<=13;i++)
{
v.push_back(i);
find(len+1,i);
v.pop_back();
}
}
int main()
{
scanf("%d%d",&n,&m);
find(1,1);
printf("%d\n",ans);
for(int i=0;i<ans;i++)
{
for(int j=0;j<e[i].size();j++)cout<<e[i][j]<<" ";
puts("");
}
}