题目链接
https://ac.nowcoder.com/acm/contest/11166/K
题目大意
给定两个长度为
n
n
n的数组
a
a
a,
b
b
b:
a
=
{
0
,
1
,
2
,
3
,
.
.
.
,
n
−
2
,
n
−
1
}
a=\{0,1,2,3,...,n-2,n-1\}
a={0,1,2,3,...,n−2,n−1}
b
=
{
b
0
,
b
1
,
b
2
,
b
3
,
.
.
.
,
b
n
−
2
,
b
n
−
1
}
b=\{b_0,b_1,b_2,b_3,...,b_{n-2},b_{n-1}\}
b={b0,b1,b2,b3,...,bn−2,bn−1}
现在你可以任意调整数组
b
b
b内的元素顺序,使得他们的loss函数最小。
求排序后的b数组。
定义数组
a
a
a和
b
b
b的loss函数为:
f
(
a
,
b
)
=
∑
i
=
0
n
−
1
∣
a
i
−
b
i
∣
f(a,b)=\sum\limits_{i=0}^{n-1}\sqrt{\left|a_i-b_i\right|}
f(a,b)=i=0∑n−1∣ai−bi∣
由于解决这个问题的时间有限,不一定要求出最优解。
共
T
T
T组测试数据,设第
k
k
k组测试的标准答案的loss函数为
f
k
∗
f_k^*
fk∗,你的输出结果的loss函数为
f
k
^
f_k\hat{}
fk^,则只需满足以下不等式即可:
1
T
∑
k
=
1
T
f
k
^
−
f
k
∗
f
k
∗
≤
4
%
\frac{1}{T}\sum\limits_{k=1}^T\frac{f_k\hat{}-f_k^*}{f_k^*}\le4\%
T1k=1∑Tfk∗fk^−fk∗≤4%
题解
本题可根据loss函数,并通过贪心策略进行处理:如果一个数在 b b b数组中出现多次,需优先将其放入最近的空位中。
参考代码
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e3+5;
int T,n,v[MAXN],e[MAXN];
int main()
{
cin>>T;
while(T--){
scanf("%d",&n);
memset(v,0,sizeof(v));
memset(e,0,sizeof(e));
int p,u=0;
for(int i=0;i<n;i++)
{
scanf("%d",&p);
e[p]++;
v[p]=p;
}
for(int s=1;s<n;s++)
for(int i=0;i<n;i++)
{
if(e[i]>1&&i-s>=0&&!e[i-s])
e[i-s]++,e[i]--,v[i-s]=i;
if(e[i]>1&&i+s<n&&!e[i+s])
e[i+s]++,e[i]--,v[i+s]=i;
}
for(int i=0;i<n;i++)
printf("%d ",v[i]);
puts("");
}
return 0;
}