Description
你是一艘战列巡洋舰的引擎操作人员,这艘船的船员在空间中侦测到了一些无法辨识的异常信号。你的指挥官给你下达了命令,让你制定航线,驾驶战列巡洋舰到达那里。
船上老旧的曲速引擎的速度是0.1AU/s。然而,在太空中分布着许多殖民星域,这些星域可以被看成一个球。在星域的内部,你可以在任何地方任意次跳跃到星域内部的任意一个点,不花费任何时间。
你希望算出到达终点的最短时间。
Input
输入包含多组测试数据。
对于每一组数据,第一行包含一个正整数n,表示殖民星域的数量。
接下来n 行,第i 行包含四个整数Xi,Yi,Zi,Ri,表示第i个星域的中心坐标为(Xi, Yi,Zi),星域的半径是Ri。
接下来两行,第一行包含值Xa,Ya,Za,告诉你当前坐标为(Xa, Ya,Za)。
第二行包含值Xo,Yo,Zo,告诉你目的地坐标为(Xo, Yo,Zo)。
输入以一行单独的-1 结尾。所有坐标的单位都是天文单位(AU)。
Output
对于每一组输入数据,输出一行表示从目前的位置到达指定目的地的最短时间,取整到最近整数。输入保证取整是明确的。
Sample Input
1
20 20 20 1
0 0 0
0 0 10
1
5 0 0 4
0 0 0
10 0 0
-1
Sample Output
100
20
Data Constraint
每个输入文件至多包含10 个测试数据。
对于10% 的数据,n = 0。
对于30% 的数据,0<=n<=10。
对于100% 的数据,0<=n<=100,所有坐标的绝对值<=10000 ,半径r<=10000。
你可以认为,你所在的星区的大小为无限大。
//written by zzy
题目大意:
在三维空间内,有n个球,球内可以瞬移(不耗时间),求起点到终点的最小时间。
题解:
不难发现是最短路,考虑建边,边值为max(sqrt(sqr(x[i]-x[j])+sqr(y[i]-y[j])+sqr(z[i]-z[j]))-r[i]-r[j],0)
floyd能过
#include<bits/stdc++.h>
#define N 105
using namespace std;
int n,i,j,k;
int x[N],y[N],z[N],r[N];
double f[N][N];
int sqr(int x) {
return x*x;
}
double _min(double a,double b)
{
if (a<b) return a; return b;
}
int main()
{
freopen("warp.in","r",stdin);
freopen("warp.out","w",stdout);
scanf("%d",&n);
while (n!=-1)
{
memset(f,0,sizeof(f));
for (i=1;i<=n;i++)
scanf("%d%d%d%d",&x[i],&y[i],&z[i],&r[i]);
scanf("%d%d%d",&x[0],&y[0],&z[0]); r[0]=0;
n++;
scanf("%d%d%d",&x[n],&y[n],&z[n]); r[n]=0;
for (i=0;i<=n;i++)
for (j=0;j<=n;j++)
if (i!=j)
{
f[i][j]=sqrt(sqr(x[i]-x[j])+sqr(y[i]-y[j])+sqr(z[i]-z[j]))-r[i]-r[j];
if (f[i][j]<0) f[i][j]=0;
}
for (k=0;k<=n;k++)
for (i=0;i<=n;i++)
for (j=0;j<=n;j++)
if (i!=j&&j!=k&&i!=k)
f[i][j]=_min(f[i][j],f[i][k]+f[k][j]);
printf("%0.lf\n",f[0][n]*10);
scanf("%d",&n);
}
}