06-6.1.1 图的基本概念

👋 Hi, I’m @Beast Cheng
👀 I’m interested in photography, hiking, landscape…
🌱 I’m currently learning python, javascript, kotlin…
📫 How to reach me --> 458290771@qq.com


喜欢《数据结构》部分笔记的小伙伴可以订阅专栏,今后还会不断更新。🧑‍💻
感兴趣的小伙伴可以点一下订阅、收藏、关注!🚀
谢谢大家!🙏

定义

图G 由 顶点集V边集E 组成,记为 G = ( V , E ) G = (V,E) G=(V,E) ,其中 V ( G ) V(G) V(G) 表示图 G 中顶点的有限非空集; E ( G ) E(G) E(G) 表示图 G 中顶点之间的关系(边)集合。若 V = v 1 , v 2 , . . . , v n V={v_1,v_2,...,v_n} V=v1,v2,...,vn 则用 ∣ V ∣ |V| V 表示图 G 中 顶点的个数 ,也称 图 G 的阶 E = { ( u , v ) ∣ u ∈ V , v ∈ V } E= \{(u,v)|u\in V, v\in V\} E={(u,v)uV,vV} ,用 ∣ E ∣ |E| E 表示图 G 中 边的条数

注意:
线性表可以是空表,树可以是空树
但图不可以是空,即 V V V 一定是非空集

图逻辑结构的应用

  • 铁路,车站
  • 道路,路口
  • 微信好友关系:没有方向(无向图)
  • 微博粉丝关系:是单向的(有向图)

无向图、有向图

顶点的度、入度、出度

对于 无向图

  • 顶点v的度是指依附于该顶点的边的条数,记为 T D ( v ) TD(v) TD(v)
  • 在具有 n 个顶点,e 条边的无向图中:
    ∑ i = 1 n T D ( v i ) = 2 ∣ E ∣ \sum_{i=1}^{n}TD(v_i)=2|E| i=1nTD(vi)=2∣E
    即无向图的全部顶点的度的和等于边数的 2倍

对于 有向图

  • 入度是以顶点 v 为终点的有向边的数目,记为 I D ( v ) ID(v) ID(v)
  • 出度是以顶点 v 为起点的有向边的数目,记为 O D ( v ) OD(v) OD(v)
  • 顶点 v 的度等于其入度和出度之和,即 T D ( v ) = I D ( v ) + O D ( v ) TD(v)=ID(v)+OD(v) TD(v)=ID(v)+OD(v)
  • 在具有 n 个顶点,e 条边的有向图中:
    ∑ i = 1 n I D ( v i ) = ∑ i = 1 n O D ( v i ) = e \sum_{i=1}^{n}ID(v_i)=\sum_{i=1}^{n}OD(v_i)=e i=1nID(vi)=i=1nOD(vi)=e
顶点-顶点的关系描述
  • 路径——顶点 v p v_p vp 到顶点 v q v_q vq 之间的一条路径是指顶点序列 v p , v i , v i 2 , . . . v i m , v q v_p,v_i,v_{i2},...v_{im},v_q vp,vi,vi2,...vim,vq
  • 回路——第一个顶点和最后一个顶点之间相同的路径称为 回路
  • 简单路径——在路径序列中,顶点不重复出现的路径称为简单路径
  • 简单回路——除第一个顶点和最后一个顶点外,其余顶点不重复出现的回路称为简单回路
  • 路径长度——路径上边的数目
  • 点到点的距离——从顶点 u 出发到顶点 v 的 最短路径 若存在,则 此路径的长度称为 从 u 到 v 的距离 ;若从 u 到 v 不存在路径,则 记该距离为无穷 (♾️)
  • 无向图中,若从顶点 v 到顶点 w 有路径存在,则称 v 和 w 是 连通
  • 有向图中,若从顶点 v 到顶点 w 和 从顶点 w 到顶点 v 之间都有路径,则称这两个顶点是 强连通
连通图、强连通图

若图 G 中任意两个顶点都是连通的,则称图 G 为 连通图 ,否则称为 非连通图
若图中任意一对顶点都是强连通的,则称此图为 强连通图


常见考点:
对于 n 个顶点的无向图 G
若 G 是连通图,则 最少 n − 1 n-1 n1 条边
若 G 是 非连通图,则 最多 可能有 C n − 1 2 C_{n-1}^{2} Cn12 条边

研究图的局部——子图

设有两个图 G = ( V , E ) 和 G ′ = ( V ′ , E ′ ) G=(V,E)和G^{'}=(V^{'},E^{'}) G=(V,E)G=(V,E) ,若 V ′ V^{'} V V V V 的子集,且 E ′ E^{'} E E E E 的子集,则称 G ′ G^{'} G G G G子图
若有满足 V ( G ′ ) = V ( G ) V(G^{'})=V(G) V(G)=V(G) 的子图,则称其 G G G 的生成子图

连通分量

无向图 中的 极大连通子图 称为 连通分量这个是用来描述无向图的
如果要描述 有向图 ,就要用到 强连通分量 这个概念
有向图 中的 极大连通子图 称为 有向图的 强连通分量

生成树

连通图生成树包含图中全部顶点的一个极小连通子图

生成森林

非连通图 中,连通分量的生成树 构成了非连通图的 生成森林

边的权、带权图/网
  • 边的权:在一个图中,每条边都可以标上具有某种含义的数值,该数值称为该边的 权值
  • 带权图/网:边上带有权值的图称为 带权图,也称
  • 带权路径长度:当图是带权图时,一条 路径上所有的权值之和 ,称为该路径的 带权路径长度

几种形态特殊的图

  • 无向完全图 :无向图中任意两个顶点之间都存在边
  • 有向完全图 :有向图中任意两个顶点之间都存在方向相反的两条弧
  • 边数很少的图 称为 稀疏图 ,反之称为 稠密图
  • 不存在回路连通的无向图

常见考点:n 个定点的图,若 ∣ E ∣ > n − 1 |E| > n-1 E>n1 ,则一定有回路

  • 有向树 :一个顶点的入度为 0,其余顶点的入度均为 1 的 有向图,称为有向树
  • 11
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Beast Cheng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值