第一个错误的版本

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/GBStyle/article/details/84954538

leetcode链接

你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。

假设你有 n 个版本 [1, 2, ..., n],你想找出导致之后所有版本出错的第一个错误的版本。

你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。

示例:

给定 n = 5,并且 version = 4 是第一个错误的版本。

调用 isBadVersion(3) -> false
调用 isBadVersion(5) -> true
调用 isBadVersion(4) -> true

所以,4 是第一个错误的版本。 

思路:一眼望过去,管它三七二十一,先来个暴破再说😏

    public int firstBadVersion(int n) {
        for (int i = 1; i <= n; i++) {
            if(isBadVersion(i)) {
                return i;
            }
        }
        return n;
    }

不用想,肯定超时了。leetcode上的简单题,一般都不需要怎么想,主要是考察细心程度,情况有没有考虑全而已。接下来用递归实现二分的

    public int firstBadVersion(int n) {
        return firstBadVersion(1, n);
    }
    public int firstBadVersion(int lo, int hi) {
        if (lo == hi) {
            return lo;
        }
        int mid = (hi - lo) / 2 + lo;  //这里是为了防止int溢出
        if (isBadVersion(mid)) {
            return firstBadVersion(lo, mid);
        } else {
            return firstBadVersion(mid + 1, hi);
        }
    }

其实很是需要细心一点的,两数相加要考虑溢出的情况,这里可以使用(hi - lo ) / 2 + lo计算平均值,而不是直接使用(hi + lo) / 2计算。

另外,在递归结束条件和递归传参方法上也可以进行小改动。(如果传的时mid - 1,那么循环结束的条件必须是lo > hi而不能包括等于的情况)

    public int firstBadVersion(int n) {
        return firstBadVersion(1, n);
    }
    public int firstBadVersion(int lo, int hi) {
        if (lo > hi) { //递归结束条件
            return lo;
        }
        int mid = (hi - lo) / 2 + lo;
        if (isBadVersion(mid)) {
            return firstBadVersion(lo, mid - 1); //使用上面的条件,这里可以缩小范围
        } else {
            return firstBadVersion(mid + 1, hi);
        }
    }

根据递归也可以很快的写出迭代的实现方法

    public int firstBadVersion(int n) {
        int lo = 1, hi = n, mid ;
        while (lo < hi) {
            mid = (hi - lo) / 2 + lo;
            if (isBadVersion(mid)) 
                hi = mid;
            else
                lo = mid + 1;
        }
        return lo;
    }

总结一下,这道题值得注意的点在于边界值的处理还有两数相加溢出的情况。

展开阅读全文

没有更多推荐了,返回首页