深度学习调参经验分享

       在深度学习中,调参指的是调整算法模型中的参数,以使模型达到更好的性能。这些参数通常分为两类:一类是模型参数,另一类是超参数。
       良好的调参策略可以极大提高模型的准确率和泛化能力。调参通常是基于经验、试错以及使用一些系统化的方法进行,如网格搜索、随机搜索、贝叶斯优化等。
1. 模型参数:指的是模型内部的可学习参数,这些参数是在学习过程中通过数据自动学习调整的, 如神经网络中的权重和偏置。
2. 超参数:指的是模型训练前需要设置的参数,这些参数通常需要手动设定,它们直接影响到模型的训练过程和最终性能。常见的超参数包括:
1)学习率:决定模型参数更新的速度。
2)迭代次数:即训练过程中数据将被重复使用的次数。
3)批量大小(Batch size):每进行一次参数更新时使用的数据样本数量。
4)网络结构相关参数:如层数、每层的单元数或过滤器数。
5)正则化参数:比如L1、L2正则化系数,用来防止过拟合。
6)激活函数:如ReLU、 sigmoid 、tanh等。
7)优化器:比如SGD、 Adam 、RMSprop等。
8) 学习率衰减策略 : 学习率衰减是指在训练过程中逐渐减少学习率的方法,有固定衰减、分段衰减、余弦退火等多种策略。
9) 早停策略(Early Stopping) : 早停是防止过拟合的策略之一,它通过监控验证集的性能,在性能不再提升时提前停止训练。
10)   梯度裁剪(Gradient Clipping) : 用于防止梯度爆炸的问题,尤其在RNN中常见。超参数通常是梯度的最大范数或值。
11)  特征选择的超参数 : 特征选择和预处理步骤中可能涉及到的参数,例如PCA中的主成分数量等。
学习率优化算法
  1. Adadelta:

    • 特点: Adadelta是Adagrad的改进版,它解决了Adagrad学习率单调递减的问题。Adadelta通过限制累积梯度的窗口大小来保持学习率的稳定。
    • 机制: 它使用一个衰减因子来累积过去的梯度平方和,类似于RMSprop,但不同的是,Adadelta使用的是梯度的指数移动平均数。此外,它还引入了一个参数更新量的均方根来代替学习率的直接更新。
    • 适用场景: Adadelta通常用于需要长时间训练的大型神经网络。
  2. Nadam(Nesterov-accelerated Adaptive Moment Estimation):

    • 特点: Nadam是Adam和Nesterov动量的结合。它在Adam的基础上引入了Nesterov加速梯度的方法,使得优化过程更高效。
    • 机制: 在Nesterov动量中,梯度不仅考虑了当前位置,还考虑了移动一步后的位置,这有助于更快地收敛。Nadam结合了Nesterov动量和Adam的自适应学习率特点。
    • 适用场景: Nadam常用于深度学习中需要快速收敛的任务。
  3. AdaMax:

    • 特点: AdaMax是Adam的一个变种,使用的是无穷范数(max norm)来替代Adam中的二范数。
    • 机制: 它保持了Adam算法的大部分特性,但在某些情况下,AdaMax的收敛性和稳定性表现得更好。
    • 适用场景: 当使用Adam出现问题时,可以尝试AdaMax来改进训练效果。
  4. AMSGrad:

    • 特点: AMSGrad也是Adam的一个变种,旨在解决Adam在某些非凸优化问题中可能存在的收敛性问题。
    • 机制: 它引入了一个校正项,通过取最大历史二次梯度的方式,确保学习率不会过于快速下降。
    • 适用场景: AMSGrad在处理复杂非凸优化问题时表现更好。
  5. SGD with Momentum:

    • 特点: 虽然SGD(随机梯度下降)本身不是自适应学习率优化算法,但通过加入动量(Momentum),可以使其具有一定的自适应特性。
    • 机制: 动量方法通过在更新方向上积累动量,使得梯度下降在陡峭的方向上加速,而在平缓的方向上减速,从而提高收敛速度。
    • 适用场景: 适用于大多数机器学习和深度学习任务,是一种经典且有效的优化方法。
  6. L-BFGS(Limited-memory Broyden–Fletcher–Goldfarb–Shanno Algorithm):

    • 特点: L-BFGS是一种拟牛顿优化方法,适用于大型数据集的优化问题。
    • 机制: 它通过在内存中保存有限的历史梯度信息,来近似估计二阶导数,从而更有效地找到最优解。
    • 适用场景: L-BFGS常用于需要精确优化的大规模机器学习任务。

7. Adagrad(Adaptive Gradient Algorithm)

特点
  • 每个参数拥有自己独特的学习率。
  • 学习率根据过去所有梯度的平方和进行调整。
  • 对稀疏数据非常有效。
机制
  • Adagrad会累积每个参数的梯度平方和,用这个累积值来调整参数的学习率。
适用场景
  • 对于稀疏特征和自然语言处理任务特别有效。
  • 适合短期训练任务,但由于学习率单调递减,不适合长期训练。

8. RMSprop(Root Mean Square Propagation)

特点
  • 解决了Adagrad学习率单调递减的问题。
  • 适用于训练不稳定或非平稳目标函数的任务。
机制
  • RMSprop通过引入一个衰减系数来计算梯度的均方根,从而调整学习率。
适用场景
  • 通常用于深度神经网络的训练。
  • 适用于需要稳定学习率的任务,如循环神经网络(RNN)。

9. Adam(Adaptive Moment Estimation)

特点
  • 结合了Momentum和RMSprop的优点。
  • 自适应调整每个参数的学习率。
  • 包含偏差修正机制,初始阶段的梯度估计更准确。
机制
  • Adam使用梯度的一阶矩估计和二阶矩估计来调整学习率。
适用场景
  • 适用于各种深度学习任务。
  • 对大多数非平稳目标函数训练效果良好。
  • 被广泛应用于计算机视觉、自然语言处理等领域。
  • 13
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值