神经网络中常用的优化器总结

       神经网络可以使用多种优化器来调整模型参数以最小化损失函数。这些优化器基于不同的算法,有各自的特点和应用场景。以下是神经网络中常用的优化器总结

  1. 梯度下降(Gradient Descent)

    (1)核心点:通过计算损失函数相对于模型参数的梯度,并沿着梯度的反方向更新参数以最小化损失函数。

    (2)主要作用:用于各种神经网络的参数优化。

    (3)优势:简单易实现;适用于大多数优化问题。

    (4)缺点:计算复杂度高,尤其是批量梯度下降;可能收敛到局部最小值;对于非凸问题表现较差。

  2. 动量梯度下降(SGD with Momentum)

    (1)核心点:通过考虑之前梯度的指数加权平均值来加速梯度下降,避免震荡。

    (2)主要作用:提高梯度下降的收敛速度,减少收敛过程中的震荡。

    (3)优势:加速收敛速度;减少局部最小值的影响。

    (4)缺点:需要调节动量参数;对于一些问题可能不稳定。

  3. Nesterov加速梯度(Nesterov Accelerated Gradient,NAG)

    (1)核心点:在动量梯度下降的基础上,预先更新参数来计算更精确的梯度。

    (2)主要作用:进一步加速收敛,提高优化效率。

    (3)优势:加速收敛;在接近最优解时表现更好。

    (4)缺点:参数调节复杂;实现难度较高。

  4. Adagrad(Adaptive Gradient Algorithm)

    (1)核心点:对每个参数进行不同程度的自适应学习率调整,较适合处理稀疏数据。

    (2)主要作用:适应不同特征的稀疏数据,提高训练效果。

    (3)优势:无需手动调节学习率;适合稀疏数据处理。

    (4)缺点:累积梯度平方和不断增加,导致学习率过小。

  5. Adadelta

    (1)核心点:是Adagrad的改进版本,通过限制累积的梯度来解决学习率急剧下降的问题。

    (2)主要作用:自适应调整学习率,提高训练稳定性。

    (3)优势:解决了Adagrad学习率下降的问题;无需手动调节初始学习率。

    (4)缺点:对超参数敏感;实现复杂。

  6. RMSprop(Root Mean Square Propagation)

    (1)核心点:通过对梯度平方的移动平均值进行归一化,调整每个参数的学习率。

    (2)主要作用:自适应调整学习率,提高训练速度和稳定性。

    (3)优势:解决了Adagrad的学习率问题;适用于非平稳目标。

    (4)缺点:超参数选择较为复杂;对不同问题需要调整参数。

  7. Adam(Adaptive Moment Estimation)

    (1)核心点:结合了动量和RMSprop的优点,既适应学习率又考虑了梯度的动量。

    (2)主要作用:广泛用于深度学习模型的优化。

    (3)优势:自适应学习率;收敛速度快;适用于大多数深度学习任务。

    (4)缺点:对超参数敏感;在某些问题上可能不稳定。

  8. Nadam(Nesterov-accelerated Adaptive Moment Estimation)

    (1)核心点:将Nesterov加速梯度引入Adam,进一步提升优化效果。

    (2)主要作用:提高Adam的收敛速度和稳定性。

    (3)优势:加速收敛;在某些任务中表现更优。

    (4)缺点:超参数调节复杂;实现难度较高。

  9. AMSGrad

    (1)核心点:是Adam的变种,通过保留历史最大学习率,解决了Adam可能收敛到局部极小值的问题。

    (2)主要作用:改进Adam的收敛性质,增强稳定性。

    (3)优势:更好的收敛稳定性;解决了Adam的一些局限。

    (4)缺点:训练时间可能较长;需要调节超参数。

  10. AdaMax

    (1)核心点:是Adam的一种变体,采用无穷范数来对梯度进行归一化,适用于稀疏梯度。

    (2)主要作用:改进Adam的性能,适应稀疏梯度。

    (3)优势:在稀疏梯度情况下表现良好;计算稳定。

    (4)缺点:对超参数敏感;可能收敛较慢。

  11. SGDW(SGD with Weight Decay)

    (1)核心点:在SGD基础上引入权重衰减,用于减少模型的过拟合。

    (2)主要作用:增强正则化效果,防止过拟合。

    (3)优势:简单有效;减少过拟合。

    (4)缺点:需要调节权重衰减参数;在某些问题上可能效果有限。

  12. AdamW

    (1)核心点:在Adam基础上引入权重衰减,改善了正则化效果。

    (2)主要作用:增强正则化效果,防止过拟合。

    (3)优势:结合了Adam和权重衰减的优点;减少过拟合。

    (4)缺点:需要调节超参数;实现复杂。

  13. FTRL(Follow The Regularized Leader)

    (1)核心点:一种在线学习算法,常用于处理大规模稀疏数据。

    (2)主要作用:适用于大规模稀疏数据的优化。

    (3)优势:适用于大规模数据集;良好的稀疏特性处理能力。

    (4)缺点:实现复杂;对超参数敏感。

  14. YellowFin

    (1)核心点:一种自适应优化器,通过自动调整学习率和动量,减少了调参工作量。

    (2)主要作用:减少手动调参,提高训练效率。

    (3)优势:自动调整超参数;提高训练稳定性。

    (4)缺点:实现复杂;适用范围有限。

  15. L-BFGS(Limited-memory Broyden–Fletcher–Goldfarb–Shanno)

    (1)核心点:一种二阶优化方法,使用近似的二阶导数信息,适用于小规模数据集。

    (2)主要作用:提高小规模数据集的优化效果。

    (3)优势:收敛速度快;适用于小规模数据集。

    (4)缺点:计算复杂度高;不适用于大规模数据集。

  16. Rprop(Resilient Backpropagation)

    (1)核心点:一种基于梯度符号的优化方法,独立调整每个参数的学习率,适用于训练速度慢的情况。

    (2)主要作用:提高训练速度,适用于训练速度慢的神经网络。

    (3)优势:训练速度快;无需调节全局学习率。

    (4)缺点:不适用于在线学习;对噪声敏感。

  17. Averaged SGD(ASGD)

    (1)核心点:通过对参数的移动平均值进行更新,提升了SGD的稳定性和收敛速度。

    (2)主要作用:提高SGD的稳定性和收敛速度。

    (3)优势:提高了稳定性;加速收敛。

    (4)缺点:需要额外的存储空间;实现复杂。

  • 7
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值