最近所学的提纲(3)(1)

  1. 探索纹理特征在预测STS癌肺转移中的潜力的研究,以及首个探索关节fdgpet和MRI纹理特征在评估任何类型癌症生物学特性方面的潜力的研究

  1. 图像的纹理可以作为不同强度(即灰度)像素的空间排列来全局化

  1. 有51名经组织学正式为原发性STS的患者参加实验,排除出现转移性或复发性的STS患者:

    1. 32个未发生肺转移的患者
    2. 19个已经发生肺转移的患者

    排除未转移患者中随访时间小于十二个月的


2.3. 图像数据预处理:
  1. PET扫描首先转换为SUV(平均摄取值),然后应用平方根变换来稳定PET噪声。
  2. MRI扫描以原始数据保存,体素在肿瘤区域和强度范围外 μ ± 3 σ \mu \pm 3\sigma μ±3σ被拒

2.4 体积融合

2.5 特征提取
  1. 从治疗前的PET和MRI扫描的肿瘤区域提取非纹理特征的方法如下:
    1. 5个PET扫描中的非纹理SUV特征:
      1. S U V m a x SUV_{max} SUVmax 肿瘤区域的最大SUV
      2. S U V p e a k SUV_{peak} SUVpeak肿瘤区域内有最大SUV值的体素的平均值,与26个相邻体素相连
      3. S U V m e a n SUV_{mean} SUVmean肿瘤区域的SUV平均值
      4. A U C − C S H AUC-CSH AUCCSH累计SUV-volume直方图下的面积
      5. P e r c e n t I n a c t i v e Percent Inactive PercentInactive不活跃的肿瘤区域的百分比
    2. Volume 从T2FS扫描中提取的肿瘤区域的体素数量乘以体素的维数
    3. Size :从T2FS扫描中提取的肿瘤区域的最长直径
    4. Solidity:肿瘤区域内得体素书与肿瘤区域三维凸壳的体素数之比
    5. Eccentricity: 1 − a b c 2 \sqrt{1-\dfrac{ab}{c^2}} 1c2ab ,其中c为长半主轴,a、b为椭圆第二、三长半主轴

  1. 纹理特征:从5种不同类型扫描的肿瘤区域中提取了41个纹理特征
    全局特征提取自肿瘤区域的强度直方图,而GLCM、GLRLM、GLSZM、NGTDM纹理是基于矩阵的特征
    在计算GLCM、GLRLM、GLSZM、NGTDM时,中心体素被区别对待,以考虑离散化长度差异。

  1. 纹理提取参数:
    1. 融合参数

      1. MRI Inv:融合过程中磁共振成像的强度的倒置 取值(0,1)
      2. MRI Weight:MRI小波子带在融合过程中的权重 取值( 1 4 , 1 3 , 1 2 , 2 3 , 3 4 \dfrac{1}{4},\dfrac{1}{3},\dfrac{1}{2},\dfrac{2}{3},\dfrac{3}{4} 41,31,21,32,43
    2. Wavelet band-pass filtering(小波带通滤波):通过对肿瘤区域的带通子带(LHL、LHH、LLH、HLL、HHL、HLH)施加不同的权重来完成稿的,通过R.Ratios确定应用于带通子带的权重与应用于其他子带的权重的比率。(R.Ratios= 1 2 , 2 3 , 1 , 3 2 , 2 \dfrac{1}{2},\dfrac{2}{3},1,\dfrac{3}{2} ,2 21,32,1,23,2)

    3. Isotropic voxel size(各项同性体素大小):此参数记为‘Scale’,在计算纹理特征前,使用三次差值将所有体积重新采样到各项同性体素大小,(Scale=1mm,2mm,3mm,4mm,5mm和初始平面分辨率)

      例如:如果所需的规模设置为5mm,而PET体积的体素大小为 5.47 × 5.47 × 3.27 m m 3 5.47\times5.47\times3.27mm^3 5.47×5.47×3.27mm3,则将重采样到 5 × 5 × 5 m m 3 5\times5\times5mm^3 5×5×5mm3

    4. Quantization of gray levels:在计算纹理特征之前,将肿瘤区域的所有强度范围量化为更少的灰度$N_g$。有两个与灰度量化有关的提取参数:

      1. 量化算法:记为‘Quant.algo’,有等概率算法Lloyd-Max定量方法,等概率算法试图在体积中定义决策阈值,使具有重构水平的 r k r_k rk的体素数量在所有灰度的量化体积中相同
      2. 量化体积内的灰度级数 N g N_g Ng:分别为8、16、32、64

2.6单变量分析

采用Spearman秩相关研究全组特征与 S T S s STS_s STSs肺转移发展的单变量相关性。为了校正多个测试比较,应用Bonferroni校正方法:将显着性水平降低到值 p < α K p<\dfrac{α}{K} p<Kα,其中K是比较的数量,α是显着性水平设置为0.05。

2.7多变量分析
  1. 找到感兴趣的P变量的线性组合,使得多变量模型为:
    g ( x i ) = β 0 + ∑ j + 1 p ( β j x i j ) , i = 1 , 2... N g(x_i)={\beta}_0+\sum_{j+1}^{p}{({\beta}_jx_{ij})},i=1,2...N g(xi)=β0+j+1p(βjxij),i=1,2...N
  2. 采用0.632+bootstrap方法和受试者操作特征曲线(ROC)度量下的面积(AUC)来估计在患者队列中获取的模型哪个能够更好的预测整个STS人群的肺转移。

ROC曲线指受试者工作特征曲线/接收器操作特性曲线(receiver operatingcharacteristiccurve),是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高。

bootstrap方法:每当选中一个元组,这个元组同样也可能再次被选中并再次添加到训练集中。例如,想象一台从训练集中随机选择元组的机器,在有放回的的抽样中,允许机器多次选择同一个元组。
0.632自助法。方法如下:假设给定的数据集包含d个元组,该数据集有放回的抽样d次,产生d个样本的自助样本集或训练集。原始数据元祖中的某些元组很可能在该样本集中出现多次。没有进入该训练集的数据元组最终形成检验集。假设进行这样的抽样多次。其结果是:在平均情况下,63.2%原始数据元组将出现在自助样本中,而其他36.8%的元组将形成检验集.
数字63.2%从何而来? 每个元组被选中的概率是 1/d, 因此未被选中的概率是(1-1/d), 需要挑选 d 次,因此一个元组在d次都未被选中的概率 ( 1 − 1 / d ) d (1-1/d)^d (11/d)d如果d很大,该概率近似为 e − 1 e^{-1} e1=0.368。因此36.8%的元组将作为验证集。

(3)

  1. 在这项研究中,每次从多变量分析的X中提取bootstrap样本 X ∗ b X^{*b} Xb时,选择负实例的概率(NoLungMets)等于选择一个正实例(LungMets患者组类)的概率,此过程称为“不平衡调整bootstrap重采样”。

  2. 建立了三种不同类型初始特征集的预测模型:

    1. 9种非纹理特征+9135PET扫描纹理参数特征
    2. 9个非纹理特征+27405种PET和MRI扫描纹理参数特征
    3. 9个非纹理特征+188700融合PET/MRI扫描纹理参数特征
  3. 通过逐级前向特征选择方案从较大的初始集合中创建包含25个不同扫描纹理特征的简约特征集。

  4. 从简化的特征集合中,通过最大化0.632+bootstrapAUC进行逐步前向特征选择。对于给定的模型顺序和给定的简化特征集,将特征选择步骤分为25个实验:

    1. 首先使用非平衡调整bootstrap重采样(1000个样本)来常见1000个逻辑回归模型g( x i x_i xi)或者顺序2的
    2. 选择最大化的0.632+bootstrapAUC的唯一剩余特性,这个过程重复到model order10.
    3. 对于每个模型的顺序,确定产生最高0.632+自举AUC的实验,并且选择特征组合用于模型顺序1-10(仅选择模型的特征,但尚未计算逻辑回归系)
  5. 对允许改变或不改变的纹理提取参数类型的所有可能组合(即自由度)重复特征减少和特征选择过程:在包含从FDG-PET扫描提取的纹理的初始特征集的情况下的24种组合和包含从单独扫描中提取的纹理的初始特征集,以及在包含从融合扫描中提取的纹理的初始特征集的情况下的26个组合。例如,在仅有MRI Weight和Quant的实验算法中,允许纹理提取参数变化。 FDG-PET初始特征集包含9个非纹理特征+79个扫描纹理参数特征,单独扫描初始特征集包含9个非纹理特征+237个扫描纹理参数特征融合扫描初始特征集包含9个非纹理特征+790扫描纹理参数特征。然后,针对三个特征集分别针对1-10的每个模型阶数,发现纹理提取参数的自由度,其产生具有最高0.632+自举AUC的多变量模型。对于不允许特定提取参数变化的实验,必须确定基线参数。

  6. 一旦针对三种不同类型的特征集的1-10的模型确定了特征的最佳组合,则再次对所有模型执行不平衡调整的自举重采样(1000个样本)。然后使用0.632+bootstrap方法根据(3)中定义的AUC以及(5)中定义的灵敏度和特定度量来估计预测性能。使用三个初始特征集的预测估计,然后确定具有最佳简约特性的单个特征组合。

(5)

  1. 构建最终预测模型的最后一步是使用不平衡调整的自举重采样(1000个样本)计算特征的最佳组合的系数。 假设在自举样本 X ∗ b X^{*b} Xb中计算特征j的逻辑回归系数,对结果向量y进行建模,其中j = 0,1…p,将其表示 β j ( X ∗ b , y ) \beta_j(X^{*b},y) βj(Xb,y),其中p是多变量模型阶数 j =0表示模型 g ( x i ) g(x_i) g(xi)的偏移量。 然后如下进行最终预测模型的不同系数估计的计算(6):
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
学习嵌入式岗位需要具备一定的基础知识和技能。以下是一个嵌入式岗位的学习提纲,可根据个人情况进行调整和补充: 1. 计算机体系结构和操作系统:了解计算机的基本组成部分,熟悉CPU、内存、外设等硬件知识,掌握操作系统的原理和常用功能。 2. 编程语言:掌握至少一种嵌入式开发常用的编程语言,如C、C++或者Python。熟悉语言的语法、数据类型、流程控制等基本概念。 3. 嵌入式系统开发工具:熟悉常用的嵌入式开发工具,如编译器、调试器、仿真器等,能够熟练使用这些工具进行软件开发和调试。 4. 嵌入式软件开发流程:了解嵌入式软件开发的基本流程,包括需求分析、系统设计、编码实现、测试和验证等环节。 5. 嵌入式操作系统:学习常见的嵌入式操作系统,如RTOS(实时操作系统)、Linux等,了解其特点、使用方法和相关工具。 6.通信协议和接口:熟悉常见的嵌入式通信协议,如UART、SPI、I2C、CAN等,了解其工作原理和使用方法。 7. 设备驱动开发:掌握设备驱动开发的基本原理和方法,能够编写和调试设备驱动程序。 8. 调试和性能优化:掌握嵌入式软件的调试和性能优化方法,能够识别和解决常见的问题和瓶颈。 9. 物联网和嵌入式安全:了解物联网和嵌入式安全的基本概念和技术,熟悉相关的安全标准和防护措施。 10.项目实践经验:通过参与嵌入式软件开发项目或者个人项目实践,积累实际经验,熟悉整个项目的开发流程和工作方法。 除了以上的学习内容,还可以关注行业动态、参与技术社区讨论、阅读相关的书籍和文档,不断扩充自己的知识面和技能。同时,也要注重动手实践,通过实际项目的经验来提升自己的技术水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值