基于MATLAB的图像分割算法

摘 要

本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。与此同时本文还分析了图像分割技术研究的方向。

关键词:图像处理 图像分割

目 录(一般目录要求最多是三级目录,不要出现四级目录)

第一章 绪论 1

1.1数字图像处理的基本特点 1

1.1.1数字图像处理的信息大多是二维信息,处理信息量很大(三级标题有问题) 1

1.1.2数字图像处理占用的频带较宽 2

1.1.3数字图像中各个像素是不独立的,其相关性大 2

1.1.4作合适的假定或附加新的测量 2

1.1.5数字图像处理后的图像受人的因素影响较大 2

1.2数字图像处理的优点 2

1.2.1再现性好 2

1.2.2处理精度高 3

1.2.3适用面宽 3

1.2.4灵活性高 3

1.3数字图像处理的应用 4

1.3.1航天和航空技术方面的应用 4

1.3.2生物医学工程方面的应用 5

1.3.3通信工程方面的应用 5

1.3.4工业和工程方面的应用 5

1.3.5军事公安方面的应用 5

1.3.6文化艺术方面的应用 6

1.4数字图像分割技术的发展概况 6

1.4.1 基于分形的图像分割技术 6

1.4.2 基于神经网络的图像分割技术 7

1.5本文的主要流程图 8

第二章 数字图像处理的处理方式 9

2.1图像变换 9

2.2图像编码压缩 9

2.3图像增强和复原 9

2.4图像分割 9

2.5图像描述 10

2.6图像分类(识别) 10

第三章 MATLAB平台及其开发环境 11

3.1.MATLAB的组成 11

3.1.1MATLAB主要有以下几个部分 11

a.数值计算功能 12

b.符号计算功能 12

c.数据分析功能 12

d.动态仿真功能 12

e.程序借口功能 13

f.文字处理功能 13

3.2MATLAB的特点 13

3.2.1功能强大,可扩展性强 13

3.2.2界面友好,编程效率高 14

3.2.3图像功能,灵活且方便 14

3.3MATLAB在图像处理中的应用 14

第四章 图像分割概念及算法研究 16

4.1图像分割的基本概念 16

4.1.1图像分割定义 16

4.2边缘检测方法(4.1和4.2之间不是并行关系) 17

4.2.1边缘检测概述 17

4.2.2边缘检测梯度算法 19

a.梯度边缘检测算法基本步骤及流程图 19

b.Robert算子 20

c.Sobel算子 21

d.Prewitt算子 21

4.2.3拉普拉斯(Laplacian)算子 22

4.2.4LoG(Laplacian-Gauss)算子 24

4.2.5坎尼(Canny)算子 25

4.3灰度阈值分割 27

4.3.1阈值分割介绍 28

a.阈值化分割原则 28

b.阈值分割算法分类 29

4.3.2全局阈值 30

a.极小值点阈值 31

b.最优阈值 31

c.迭代阈值分割 33

4.3.3动态阈值 34

a.阈值插值 35

b.水线阈值算法 35

4.4区域分割 37

4.4.1区域生长的基本原理、步骤及流程图 37

4.4.2生长准则和过程 40

a.灰度差准则 40

b.灰度分布统计准则 41

c.区域形状准则 42

4.4.3分裂合并 43

第五章 总结 45

5.1对于图像边缘检测的分析 45

5.2对于图像阈值分割的分析 45

5.3对于图像区域分割的分析 46

5.4改进意见(改进可另外做为一章比如说某某算法等的若干改进等,不要放入总结一章中)(总结是对整篇文章的一个概述,应该是写比如得出些什么结论,一些算法间比较等相关问题。) 46

参考文献 48

  49

  50

第一章 绪论

1.1数字图像处理的基本特点

1.1.1数字图像处理的信息大多是二维信息,处理信息量很大

如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。因此对计算机的计算速度、存储容量等要求较高。

1.1.2数字图像处理占用的频带较宽

与语言信息相比,占用的频带要大几个数量级。如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要求。

1.1.3数字图像中各个像素是不独立的,其相关性大

在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。因此,图像处理中信息压缩的潜力很大。

1.1.4作合适的假定或附加新的测量

由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。

1.1.5数字图像处理后的图像受人的因素影响较大

由于人的视觉系统很复杂,受环境条件、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究。另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究。例如,什么是感知的初始基元,基元是如何组成的,局部与全局感知的关系,优先敏感的结构、属性和时间特征等,这些都是心理学和神经心理学正在着力研究的课题。

1.2数字图像处理的优点

1.2.1再现性好 

数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的再现。 

1.2.2处理精度高 

按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。回想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。 

1.2.3适用面宽 

图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、 射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像(彩色图像也是由灰度图像组合成的,例如RGB图像由红、绿、蓝三个灰度图像组合而成)组合而成,因而均可用计算机来处理。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。

1.2.4灵活性高 

图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。由于图像的光学处理从原理上讲只能进行线性运算,这极大地限制了光学图像处理能实现的目标。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。

1.3数字图像处理的应用

图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 

1.3.1航天和航空技术方面的应用 

数字图像处理技术在航天和航空技术方面的应用,除了上面介绍的JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水分和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。

1.3.2生物医学工程方面的应用 

数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。除了上面介绍的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。此外,在X光肺部图像增析、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。

1.3.3通信工程方面的应用 

当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、DPCM编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。

1.3.4工业和工程方面的应用 

在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。其中值得一提的是研制具备视觉、听觉和触觉功能的智能机器人,将会给工农业生产带来新的激励,目前已在工业生产中的喷漆、焊接、装配中得到有效的利用。

1.3.5军事公安方面的应用 

在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。 

1.3.6文化艺术方面的应用 

目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术——计算机美术。

利用计算机进行图像处理有两个目的:一是产生适合人观察和识别的图像,二是希望能由计算机自动识别和理解图像。无论为了哪种目的,图像处理中关键的一步就是对包含有大量各式各样景物信息的图像进行分割。分割的最终结果是图像被分解成一些具有某种特征的最小成分,称为图像的基元。相对于整幅图像来说,这种图像基元更容易被快速处理。图像特征是指图像中可用作标志的属性,它可以氛围图像的统计特性和图像的视觉特征两类。图像的统计特性是指一些人为定义的特征,通过变换才能得到,如图像的直方图、矩、频谱等;图像的视觉特征是指人的视觉可直接感受到的自然特征,如区域的亮度、纹理或轮廓等。利用这两类特征把图像分解成一系列有意义的目标或区域的过程称为图像的分割。

1.4数字图像分割技术的发展概况

1.4.1 基于分形的图像分割技术

基于特征的图像分割方法包括两个重要的部分:特征抽取与模式聚类。特征提取是图像分割最重要的问题之一,能否抽取出有效的特征值对分割结果有很大的影响,如果没有好的特征值,分类方法再好也无法获得理想的结果。

特征抽取大致可以分为三类,即基于特征、基于模型以及基于结构。基于特征的方法就是寻找具有相同特性的区域或区域边界,基于模型的方法就是假设一个基本的随机过程并用过程参数作为特征。由于模型参数也可用作纹理特征,基于模型的方法可看成是基于特征方法的一个子集。结构特征基于假设图像中有可检测的基本结构元素并按一定的规则排列。

基于模型的方法最典型的模型主要有两种:分形几何模型与随机模型。分形函数近年来受到越来越多的重视。分形是B.B.Mandelbrot在总结了自然界中的非规整几何图形后,于1975年第一次提出了分形的概念。Mandelbrot给分形的定义为:设的豪斯道夫维数是D,如果这个维数恒大于集合A的拓扑维数Dt,则称集合A是分形集,简称分形。上述定义没有其他任何条件要求。1986年,Mandelbrot又给出了分形的第二个定义:组成部分与整体以某种相似的形叫做分形。这个定义突出了相似性的作用,反映了自然界中很广泛一类物体的基本属性;局部与局部,局部与整体在形态、功能、信息、时间与空间等方面具有统计意义上的相似性。简单地说分形就是一个维数大于拓扑维数的集合。分形维数的一大特点是尺度变换不变性。分形几何学已经广泛应用于图像压缩和图像编码,并且取得了较好的效果。同时也有一些研究者将分形特征用于自然纹理图像和自然景物的分割与识别中。分形维数特征对图像尺度变换不敏感,与人对物体表面粗糙度的判断有很大的相关性,由于许多自然纹理都具有线形对数功率谱,而分形维数就对应于这种线形对数功率谱斜率的估计值,因而用分形维数描述自然纹理有一定的合理性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值