- 实验目的
–掌握图像分割的原理
–掌握基于阈值的分割方法
–掌握区域生长算法
- 实验原理
1.图像的二值化的基本原理
图像的二值化处理就是讲图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效果。即将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。
2.迭代阈值法
(1)选择一个初始阈值T1
(2)根据初始阈值T1将图像 分割为G1和G2两个部分,分别求出G1和G2的平均灰度值m1和m2;
(3)计算新的阈值T2= (m1+m2)/2;
(4)如果| T1 – T2 |≤ T0,终止迭代。否则令T1= T2,重复步骤(2)和(3),最后的T2就是所求的最优阈值。
初始阈值T1的选取:
当目标与背景面积相当时,将T1设为整幅图像的平均灰度
当目标与背景面积相差较远时,将T1设为最大灰度与最小灰度的中间值。
3.质心型区域生长算法:
(1)确定初始种子点,阈值;
(2)对图像进行逐行扫描,找出尚没有归属的像素;
(3)比较已存在区域的像素灰度平均值与该区域邻接的像素灰度值,若差值小于阈值,则合并;
(4)以新合并的像素为中心,重复步骤(3),检查新像素的邻域,直到区域不能进一步扩张;
(5)返回到步骤(2),继续扫描直到不能发现没有归属的像素,则结束整个生长过程。
三、实验环境
– Windows XP/ Windows 7
– Matlab 7.0.1/ Matlab R2008
四、实验内容与步骤