高维数组维度的理解

在深度学习中,高维数组(通常称为‌张量‌)的维度是理解数据表示、模型输入输出和计算逻辑的关键。以下是其核心概念的层次化解析:


1. 维度的本质

高维数组的维度(dimensions/axes)本质上是数据的‌结构化层次‌。

  • 低维示例‌:
    • 标量(0维):5
    • 向量(1维):[1, 2, 3](如全连接层的输入)
    • 矩阵(2维):[[1, 2], [3, 4]](如单通道图像或词向量矩阵)
  • 高维示例‌:
    • 3维:(batch_size, sequence_length, embedding_dim)(如自然语言处理中的文本批次)
    • 4维:(batch_size, height, width, channels)(如图像批次,常见于卷积网络)
    • 5维:(batch_size, depth, height, width, channels)(如视频或3D医学图像)

2. 高维张量的典型场景

(1) 图像数据&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值