在深度学习中,高维数组(通常称为张量)的维度是理解数据表示、模型输入输出和计算逻辑的关键。以下是其核心概念的层次化解析:
1. 维度的本质
高维数组的维度(dimensions
/axes
)本质上是数据的结构化层次。
- 低维示例:
- 标量(0维):
5
- 向量(1维):
[1, 2, 3]
(如全连接层的输入) - 矩阵(2维):
[[1, 2], [3, 4]]
(如单通道图像或词向量矩阵)
- 标量(0维):
- 高维示例:
- 3维:
(batch_size, sequence_length, embedding_dim)
(如自然语言处理中的文本批次) - 4维:
(batch_size, height, width, channels)
(如图像批次,常见于卷积网络) - 5维:
(batch_size, depth, height, width, channels)
(如视频或3D医学图像)
- 3维: