Python中scatter函数参数搞懂之新手上路

本文通过实例解析Python的scatter函数,介绍颜色、形状、图例等参数的使用,探讨如何改变散点图的视觉效果。文章适合初学者,同时也指出了参数理解上的常见困惑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、第一次上手被挖坑

import numpy as np #把前面的东东简称为np

import matplotlib.pyplot as plt #把前面的东东简称为plt

#导入模块,并且改名称,方便使用

x = np.arange(1,10) #你也可以自己编的,比如1-9
y = x #把x的值给了y,y也是1-9
fig = plt.figure()
ax =fig.add_subplot(111)
#这是坑啊,我查了相关的资料,发现根本不是测试数据,这一步是在画坐标框和标尺
ax.set_title('Scatter Plot') #设置标题,这就是图的名字,自己就居中了
plt.xlabel('X')  #设置X轴标签,感觉就打印了x在横坐标下面
plt.ylabel('Y') #设置Y轴标签,感觉就打印了y在纵坐标旁边
baozi=x  #这个步骤就是把x值给了baozi(包子,哈哈),一会下面会用到baozi
ax.scatter(x,y,s=100,c='r',linewidths=baozi,marker='o') #画散点图 ,这就是画散点图的函数,这里面好多参数,一会就是围绕这个展开学习,改改改
plt.legend('x')   #设置图例,一会能看到这东西
plt.show() #显示所画的图,基本上就是全部给我画出来

二、翠花,上图

三、就图开始学习,并且学习自己动一动参数

(一)最简单的参数

1、搞颜色,r代表红色,y代表黄色,搞个试试。下面这些颜色,随便上

 

2、搞形状,marker代表形状,0代表圆圈,我改成星星的。下面这些形状,随便上

 

3、搞图例,图例不是x么,我该成W,好像只能显示首字母,不科学啊,这个还要继续学习

四、结束了,可以看看理论,继续提升

全网都是这个图,新手感觉根本没讲明白啊,所以我还找到了一个,凑合看吧,感觉有点帮助就行

参数:

  • x,y:表示的是shape大小为(n,)的数组,也就是我们即将绘制散点图的数据点,输入数据。

  • s:表示的是大小,是一个标量或者是一个shape大小为(n,)的数组,可选,默认20。

  • c:表示的是色彩或颜色序列,可选,默认蓝色’b’。但是c不应该是一个单一的RGB数字,也不应该是一个RGBA的序列,因为不便区分。c可以是一个RGB或RGBA二维行数组。
    在这里插入图片描述

  • marker:MarkerStyle,表示的是标记的样式,可选,默认’o’。

  • cmap:Colormap,标量或者是一个colormap的名字,cmap仅仅当c是一个浮点数数组的时候才使用。如果没有申明就是image.cmap,可选,默认None。

  • norm:Normalize,数据亮度在0-1之间,也是只有c是一个浮点数的数组的时候才使用。如果没有申明,就是默认None。

  • vmin,vmax:标量,当norm存在的时候忽略。用来进行亮度数据的归一化,可选,默认None。

  • alpha:标量,0-1之间,可选,默认None。

  • linewidths:也就是标记点的长度,默认None。

 

五、感谢以下博客的提供的参考

标题:plt.scatter()函数解析(最清晰的解释)

作者:我是管小亮

地址:https://tefuirnever.blog.csdn.net/article/details/88944438?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param

 

标题:Python——plt.scatter各参数详解

作者:鱼圆(转载的好像)

地址:https://blog.csdn.net/toretto_ana/article/details/82931428?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-6.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-6.channel_param

六、留坑继续学习

ax =fig.add_subplot(111)

这个函数看了10分钟,晕死了,没搞懂,下次吧

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值