centos上部署Ollama平台,实现语言大模型本地部署

网上有很多大模型,很多都是远程在线调用ChatGPT的api来实现的,自己本地是没有大模型的,这里和大家分享一个大模型平台,可以实现本地快速部署大模型。
Ollama是一个开源项目,它提供了一个平台和工具集,用于部署和运行各种大型语言模型(LLM,Large Language Model)。Ollama简化了在本地机器上运行这些模型的过程,使得用户不需要深入的机器学习知识就可以利用先进的语言模型进行自然语言处理任务,如对话生成、文本补全等。Ollama的官方网站是 https://ollama.com/ ,用户可以通过简单的命令行指令在本地运行模型,例如Llama 2等大模型。这为开发者和研究人员提供了一个便捷的途径来实验和应用最先进的语言模型技术,而无需依赖云端服务,从而降低了延迟并增强了隐私保护。Ollama的核心功能包括模型管理和运行环境的封装,使得用户可以轻松地拉取模型、运行模型并与其交互。此外,Ollama还支持多种模型格式和架构,使其成为一个灵活的平台,适用于广泛的自然语言处理应用。

判断是否有Nvidia显卡

lspci | grep -i nvidia

有显卡结果

部署Docker

建议docker部署,直接部署很容易超时。Docker在centos上的安装网上教程很多,不再叙述。但是Docker也建议使用配置一下加速源

sudo mkdir -p /etc/docker
sudo tee /etc/docker/daemon.json <<-'EOF'

然后输入下面内容

{
    "registry-mirrors": [
        "https://dockerproxy.com",
        "https://mirror.baidubce.com",
        "https://docker.m.daocloud.io",
        "https://docker.nju.edu.cn",
        "https://docker.mirrors.sjtug.sjtu.edu.cn"
    ]
}
EOF

然后重启docker服务

sudo systemctl daemon-reload
sudo systemctl restart docker

拉取Ollama镜像

docker run -d --gpus=all -v ollama:/home/Ollama/.ollama -p 11434:11434 --name ollama ollama/ollama

首次需要从仓卡拉取,有点慢
拉取镜像

启动大模型

启动本地大模型,这里以llama2为例,第一次会下载模型:

docker exec -it ollama ollama run llama2

下载模型
执行完毕后,会进入交互模式,输入内容,即可在线对话
使用语言模型
Ollama 还支持很多市面上其他开源大模型(大模型列表 ollama.com/library),下面是一些列子:
在这里插入图片描述

以API的方式调用模型

curl http://localhost:11434/api/chat -d '{
  "model": "llama2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

api调用
API文档可以参考
https://github.com/ollama/ollama/blob/main/docs/api.md

<think>好的,我需要帮助用户在CentOS 7上安装Ollama。首先,我应该回顾用户提供的引用内容,看看里面有哪些安装方法。 用户提供了三个引用。引用[1]提到使用wget下载特定版本的Ollama的tar.gz文件,然后解压到/usr目录,接着启动服务。引用[2]中有一个视频教程链接,步骤类似,还提到添加用户和组。引用[3]则使用curl命令运行安装脚本,但用户提到这个过程可能需要很长时间。 接下来,我需要综合这些方法,整理出清晰的步骤。CentOS 7比较旧,可能需要先安装依赖,比如epel-release、python3等,如引用[3]所述。用户可能没有提到系统更新,但为了确保环境兼容,建议先执行yum update。 然后,安装Ollama有两种方法:手动下载tar.gz包或用安装脚本。手动方法可能更可靠,特别是如果网络不稳定,但需要用户自己下载和解压。使用安装脚本更方便,但可能因为网络问题导致下载慢或失败,如引用[3]提到的需要很长时间。 另外,引用[2]提到添加ollama用户和组,这一步在手动安装时可能被忽略,需要特别注意,否则服务可能无法正确运行。 最后,启动服务和设置开机自启也是关键步骤,确保Ollama在系统重启后自动运行。可能还需要配置防火墙,但用户没有提到,暂时放在注意事项里。 需要检查步骤是否完整,比如解压路径是否正确,用户权限是否配置,服务启动命令是否有效。可能还需要验证每个步骤的命令是否存在潜在问题,比如wget的链接是否最新,或者安装脚本是否有兼容性问题。 总结下来,安装步骤应该包括系统更新、依赖安装、两种安装方法、用户配置、服务启动和验证。同时,提醒用户可能的注意事项,比如网络问题或版本兼容性。</think>### 在 CentOS 7 上安装 Ollama 的步骤 #### 1. **系统更新与依赖安装** - 更新系统软件包: ```bash sudo yum update -y ``` - 安装必要依赖(如 Python 3、curl 等): ```bash sudo yum install -y epel-release curl wget python3 python3-devel python3-pip ``` #### 2. **安装 Ollama** **方法一:手动安装(推荐)** - 下载 Ollama 的预编译包: ```bash wget https://github.com/ollama/ollama/releases/download/v0.5.11/ollama-linux-amd64.tgz ``` - 解压到系统目录: ```bash sudo tar -C /usr -xzf ollama-linux-amd64.tgz ``` - 确保 `ollama` 用户和组存在: ```bash sudo groupadd ollama sudo useradd -g ollama ollama ``` **方法二:使用安装脚本** ```bash curl -fsSL https://ollama.com/install.sh | sh ``` > **注意**:此方法可能耗时较长(几十分钟到数小时),依赖网络稳定性[^3]。 #### 3. **启动 Ollama 服务** - 启动服务并设置开机自启: ```bash sudo systemctl enable ollama sudo systemctl start ollama ``` - 验证服务状态: ```bash sudo systemctl status ollama ``` #### 4. **验证安装** - 运行简单命令测试: ```bash ollama run llama2 ``` 若返回模型交互界面,则安装成功。 --- ### **注意事项** 1. **网络问题**:安装脚本或模型下载需稳定网络,建议配置代理或使用国内镜像。 2. **兼容性**:CentOS 7 内核版本较低,若遇到依赖冲突,可尝试升级内核或使用容器化部署。 3. **权限问题**:手动安装时需确保 `/usr/bin/ollama` 的权限归属 `ollama` 用户[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS开发者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值