论文笔记——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge

论文笔记——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge

本文提出了一种基于边缘计算的协议来改进联邦学习算法。

由服务器和基站(BS)组成的位于无线网络中的特定MEC平台管理服务器和客户端的行为。

通过MEC operator 对客户端进行选择。

首先,随机选取一定占比的客户端,要求这些客户端发送其资源信息(例如无线信道状态,计算能力(例如,他们是否可以备用CPU或GPU来更新模型)以及与之相关的数据资源的大小)给MEC operator。

然后,MEC operator 根据收到的信息估计分发和计划的更新和上传步骤所需的时间,并确定哪些客户端进入这些步骤,以对户端进行选择。

FedCS协议

  

客户端选择

使用CIFAR-10和Fashion-MNIST数据集测试协议性能:

IID

non-IID

会不会造成拥有大量数据的客户端参与训练的机会较小,浪费了大量可用于训练的数据?

原文见论文题目

 

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
联邦学习是一种通过多方计算(MPC)进行信用评分的方法。信用评分是评估个人信用风险的重要工具,但在传统模型中,所有的个人数据都必须集中在一起进行建模和分析,这会引发隐私和数据安全的担忧。 联邦学习通过在保持数据分散的同时进行模型训练,解决了这些问题。在这一方法中,各方参与者共享他们的本地模型,而不是直接共享他们的数据。每个参与者都单独训练模型,并将更新的模型参数发送给中央服务器。服务器对接收到的参数进行聚合,生成一个全局模型,然后将更新的模型参数再次分发给各参与者。这个过程迭代进行,直到全局模型收敛并达到所需的性能。 联邦学习具有以下优点:首先,隐私得到了保护,因为个人数据不必共享;其次,数据安全风险降低,因为数据不必发送到中央服务器;再次,由于数据分布保持不变,模型的准确性和鲁棒性可以得到保证。 在信用评分方面,用联邦学习进行多方计算,可以使多个金融机构之间能够合作进行信用评分,而不必共享客户的个人数据。这种方法可以提高信用评分的效果,同时保护客户的隐私和数据安全。 总而言之,联邦学习通过多方计算解决了信用评分中的隐私和数据安全问题。这种方法可以促进金融机构之间的合作,并提高信用评分的准确性和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值