Threats to Federated Learning: A Survey (联邦学习面临的威胁:一项调查)
本篇文章是2020年发表在arXiv上的论文,介绍了联邦学习存在的隐私威胁问题,是一篇还不错的综述论文,对理解投毒攻击和推理攻击有很大帮助,以下是我个人看论文的重点记录,可能也有理解不对的地方,建议看原文!
文章目录预览
一、背景与介绍
通过摘要可以得知,由于传统机器学习模型集中训练方法面临强大的隐私挑战,联邦学习可能是一种解决方案。但是,现有的联邦学习协议已经证明存在漏洞,攻击者可以利用这些漏洞破坏数据隐私。因此,未来联邦学习算法设计对隐私保护的影响是至关重要的。本篇文章主要介绍了联邦学习的概念,然后提供了一个独特的分类方法,覆盖了威胁模型和联邦学习的两种主要攻击:投毒攻击和推理攻击。并在最后讨论了未来的研究方向。
根据数据特征和数据样本在参与者中的分布情况,联邦学习分为水平联邦学习(HFL)和垂直联邦学习(VFL)和联邦迁移学习(FTL)。进一步根据参与者的数量、联邦学习训练的参与等级和技术能力,又将HFL分为HFL对企业(H2B),HFL对消费者(H2C)。
- H2B模式,少数参与者,经常被选中,参与者具有显著的计算能力和复杂的技术能力。
- H2C模式,成千上万参与者,每一轮训练只选择其中一个子集,计算能力普遍不高。
1.2 联邦学习中的隐私泄露
- 训练过程中交流模型更新仍然可以揭示敏感信息。
- 即使是原始梯度的一小部分,也可能揭示本地数据的信息。
- 恶意攻击者可以在几次迭代中安全窃取梯度中的训练数据。
联邦学习协议设计可能包含两方面的漏洞: - (1)潜在的恶意服务器,可以随着时间的推移观察个人更新,篡改训练过程,并控制参与者对全局参数的视图;
- (2)任何可以观察全局参数并控制其参数上传的参与者。例如,恶意参与者故意改变输入,或在全局模型中引入隐蔽的后门。
本文调查了对联邦学习威胁的最新进展,仅关注内部对联邦学习系统发起的两种特定威胁:
- (1)试图阻止一个模型被学习的投毒攻击,或使模型产生比敌手更可取的推论