最新论文笔记(+18):Threats to Federated Learning: A Survey

这篇2020年的arXiv论文探讨了联邦学习中的隐私威胁,重点关注投毒攻击和推理攻击。它介绍了威胁模型,包括内部攻击、半诚实和恶意环境,以及训练阶段的攻击。文章详细解释了数据投毒、模型投毒、GAN攻击、成员推理和属性推断等,并对未来的研究方向进行了讨论,如维数灾难、VFL威胁、异构架构的FL和去中心化学习的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Threats to Federated Learning: A Survey (联邦学习面临的威胁:一项调查)

本篇文章是2020年发表在arXiv上的论文,介绍了联邦学习存在的隐私威胁问题,是一篇还不错的综述论文,对理解投毒攻击和推理攻击有很大帮助,以下是我个人看论文的重点记录,可能也有理解不对的地方,建议看原文!

一、背景与介绍

通过摘要可以得知,由于传统机器学习模型集中训练方法面临强大的隐私挑战,联邦学习可能是一种解决方案。但是,现有的联邦学习协议已经证明存在漏洞,攻击者可以利用这些漏洞破坏数据隐私。因此,未来联邦学习算法设计对隐私保护的影响是至关重要的。本篇文章主要介绍了联邦学习的概念,然后提供了一个独特的分类方法,覆盖了威胁模型和联邦学习的两种主要攻击:投毒攻击推理攻击。并在最后讨论了未来的研究方向。

根据数据特征和数据样本在参与者中的分布情况,联邦学习分为水平联邦学习(HFL)和垂直联邦学习(VFL)和联邦迁移学习(FTL)。进一步根据参与者的数量、联邦学习训练的参与等级和技术能力,又将HFL分为HFL对企业(H2B),HFL对消费者(H2C)。
在这里插入图片描述

  • H2B模式,少数参与者,经常被选中,参与者具有显著的计算能力和复杂的技术能力。
  • H2C模式,成千上万参与者,每一轮训练只选择其中一个子集,计算能力普遍不高。

1.2 联邦学习中的隐私泄露

  • 训练过程中交流模型更新仍然可以揭示敏感信息。
  • 即使是原始梯度的一小部分,也可能揭示本地数据的信息。
  • 恶意攻击者可以在几次迭代中安全窃取梯度中的训练数据。
    联邦学习协议设计可能包含两方面的漏洞:
  • (1)潜在的恶意服务器,可以随着时间的推移观察个人更新,篡改训练过程,并控制参与者对全局参数的视图;
  • (2)任何可以观察全局参数并控制其参数上传的参与者。例如,恶意参与者故意改变输入,或在全局模型中引入隐蔽的后门。

本文调查了对联邦学习威胁的最新进展,仅关注内部对联邦学习系统发起的两种特定威胁:

  • (1)试图阻止一个模型被学习的投毒攻击,或使模型产生比敌手更可取的推论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值