序列变换
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 854 Accepted Submission(s): 345
Problem Description
我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增。其中无论是修改前还是修改后,每个元素都必须是整数。
请输出最少需要修改多少个元素。
请输出最少需要修改多少个元素。
Input
第一行输入一个
T(1≤T≤10)
,表示有多少组数据
每一组数据:
第一行输入一个 N(1≤N≤105) ,表示数列的长度
第二行输入N个数 A1,A2,...,An 。
每一个数列中的元素都是正整数而且不超过 106 。
每一组数据:
第一行输入一个 N(1≤N≤105) ,表示数列的长度
第二行输入N个数 A1,A2,...,An 。
每一个数列中的元素都是正整数而且不超过 106 。
Output
对于每组数据,先输出一行
Case #i:
然后输出最少需要修改多少个元素。
Case #i:
然后输出最少需要修改多少个元素。
Sample Input
2 2 1 10 3 2 5 4
Sample Output
Case #1: 0 Case #2: 1
LIS题目,运用了STL中的upper_bound(),返回第一个>=key的位置。
AC代码:
#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
using namespace std;
const int MAXN = 100005;
const int INF = 0x3f3f3f3f;
int n, a[MAXN], b[MAXN];
int main(int argc, char const *argv[])
{
int t;
scanf("%d", &t);
for(int cas = 1; cas <= t; ++cas) {
memset(b, INF, sizeof(b));
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
a[i] -= i;
}
int ans = 0;
for(int i = 1; i <= n; ++i) {
int x = upper_bound(b + 1, b + 1 + n, a[i]) - b;
b[x] = a[i];
ans = max(ans, x);
}
printf("Case #%d:\n%d\n", cas, n - ans);
}
return 0;
}