【Tensorboard排坑】每次打开都是旧的日志文件??

先说结论

1、不同项目的log不要放在同一路径上。

2、打开新的log之前,先把之前的项目关掉,或者退出之前打开的tensorboard。(不是关网页,是在terminal调用的地方quit)

排坑过程:

背景

我是在pytorch环境下调用的tensorboard,最近发现打开的tensorboard都长一样,step也明显不同,所以肯定有问题。上网搜索了一下。

有说路径的问题,但我的不同项目的log都放在不同路径上,所以应该不是这个问题。

我打开tensorboard的方式:

我是在pycharm的terminal里打开的。具体如下所示。

PS E:\python_work\DeepLearning\Test_Project> cd Speech_Command_GRU
PS E:\python_work\DeepLearning\Test_Project\Speech_Command_GRU> cd log
PS E:\python_work\DeepLearning\Test_Project\Speech_Command_GRU\log> tensorboard --logdir=./            
TensorFlow installation not found - running with reduced feature set.
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.9.0 at http://localhost:6006/ (Press CTRL+C to quit)

其实就是在路径下输入:

tensorboard --logdir=./

问题发现:

考虑到我打开了三个不同的项目,第一个正常,第二、三打开显示都是第一个项目的log内容。所以考虑应该和第一个项目log打开有关。

又注意到打开tensorboard后有写:

(Press CTRL+C to quit)

所以猜可能是没有退出,于是把第一个项目的退出了,然后再重新打开第三个项目的log发现成功了。

综上得出文章开头两个结论

### 回答1: 要打开tensorboardx,首先需要安装tensorboardx库。可以在终端中使用pip install tensorboardx命令进行安装。 在安装完成之后,可以在Python脚本中导入tensorboardX库,例如: ```python import tensorboardX ``` 接下来,创建一个SummaryWriter对象,用于记录训练数据和写入tensorboardx日志文件。可以指定保存日志的目录路径,例如: ```python writer = tensorboardX.SummaryWriter(log_dir='./logs') ``` 然后,可以通过调用SummaryWriter对象的add_scalar()方法来添加标量数据,例如损失函数的值: ```python writer.add_scalar('loss', loss.item(), global_step) ``` 也可以通过add_image()方法来添加图像数据: ```python writer.add_image('image', img_tensor, global_step) ``` 在训练过程中,每次添加数据后需要调用SummaryWriter对象的flush()方法刷新缓冲区,以确保数据被写入日志文件: ```python writer.flush() ``` 训练完成后,调用SummaryWriter对象的close()方法来关闭写入器: ```python writer.close() ``` 最后,在终端中切换到存储了日志目录的位置,并运行以下命令以启动tensorboardx: ```shell tensorboard --logdir=./logs ``` 在浏览器中输入提供的链接,即可在tensorboardx中查看可视化的训练结果和日志信息。 这是使用tensorboardx打开tensorboard的基本步骤。具体操作可以根据需要进行适当调整和扩展。 ### 回答2: 要打开TensorboardX,首先需要安装TensorboardX库。可以通过在终端中运行以下命令来安装TensorboardX: ``` pip install tensorboardX ``` 安装完成后,可以在Python脚本中引入TensorboardX库: ```python import tensorboardX ``` 然后,可以创建一个TensorboardX的SummaryWriter对象: ```python writer = tensorboardX.SummaryWriter() ``` 接下来,可以使用SummaryWriter对象记录想要可视化的数据。例如,可以记录训练损失: ```python writer.add_scalar('train_loss', loss, epoch) ``` 在记录完数据后,可以通过运行以下命令来启动TensorboardX服务: ``` tensorboard --logdir=path_to_logs ``` 其中,`path_to_logs`是记录数据的文件夹路径。运行该命令后,会在终端中显示TensorboardX的服务信息,包括一个URL地址。将该URL粘贴到浏览器中,即可打开TensorboardX的可视化界面。 在TensorboardX界面中,可以查看各种可视化图表,如训练损失曲线、准确率曲线、模型架构图等。此外,还可以通过控制面板进行用户交互,调整可视化效果,帮助分析和优化模型。 ### 回答3: 要打开tensorboardx,首先需要安装tensorboardx库。可以通过以下命令在命令行中安装tensorboardx: ``` pip install tensorboardX ``` 安装完成后,可以在python脚本中使用如下代码来打开tensorboardx: ```python from tensorboardX import SummaryWriter # 创建SummaryWriter对象,指定日志保存的路径 writer = SummaryWriter('logs') # 建立tensorboard的连接 writer.add_scalar('scalar', 0.5, 1) writer.add_text('text', 'Hello Tensorboard!', 1) writer.add_image('image', image_tensor, 1) # 关闭tensorboardx连接 writer.close() ``` 对于以上代码示例,首先我们需要导入`SummaryWriter`类来创建一个写入器对象。然后,可以使用`add_scalar`方法来写入标量数据,`add_text`方法来写入文本数据,`add_image`方法来写入图像数据。最后,通过`close`方法关闭tensorboardx连接。 在运行脚本后,会在指定的`logs`文件夹下生成一个`events.out.tfevents.xxxxxxxxxx.hostname`文件,其中`xxxxxxxxxx`是当前时间的时间戳。接下来,在命令行中输入以下命令: ``` tensorboard --logdir=logs ``` 然后,在浏览器中打开`http://localhost:6006`即可打开tensorboardx界面,其中`6006`是默认端口号。在tensorboardx界面上,可以查看标量数据、文本、图像等信息的可视化结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值