1. 情感倾向性分析
长短时记忆网络的基本概念
长短期记忆网络(LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。
- LSTM网络结构
- LSTM的门控机制
- LSTM的变种
2 LSTM网络结构
2.1 LSTM网络结构及其特点
- 基于RNN结构设计,从左到有依次阅读整个句子,并不断更新记忆。
- LSTM在不同cell之间传递的是2个记忆信息,而不像循环神经网络一样只有一个记忆信息。
2.2 LSTM内部结构
- 区别于循环循环神经网络,LSTM最大的特点是,在更新内部记忆的时候,引入了遗忘机制,那就是:允许网络忘记一些过去阅读过程中看到的一些无关紧要的内容,只保留有用的历史内容,通过这种方式,延长了记忆长度。
3 LSTM门控机制
3.1 LSTM的关键:细胞状态
- 细胞状态类似于传送带,直接在整个链上运行,只有一些少量的线性交互。信息在上面保持不变会很容易实现。
- LSTM通过“门控机制”让信息选择性通过,来去除或者增加信息到细胞状态
- 包含一个sigmoid神经网络层和一个piontwise乘法操作。
- Sigmiod层输出0到1之间的概率值,描述每个部分有多少量可以通过。
3.2 遗忘门
- 第一步:决定从“细胞状态”中丢弃什么信息
3.2 输入门
- 第二步:决定放什么信息到“细胞状态中”
3.3 更新状态
- 第三步:更新细胞状态
4 LSTM变种
4.1 变种1
- 增加窥视孔链接(peephole connection)
- 让门层也会接受细胞状态的输入
4.2 变种2
- 通过使用coupled忘记和输入门
- 之前是分开确定需要忘记和添加的信息,这里是一同作出决定。
4.3 变种3:GRU
- GRU有两个门,分别为更新门和重置门,即图中的zr和rt更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,更新门的值越大说明前一时刻的状态信息带入越少,重置门用于控制忽略前一时刻的信息的程度,重置门的值越小说明忽略的越多。