分布式锁解决方案

背景

由于分布式或者集群部署项目时,在某些业务场景下需保证资源的原子性、一致性和互斥性。

如果把房子比作资源,通俗的来讲,我无论在那个城市生活,这个房子我先租的,再没有退房的前提下,别人都不能用

解决方案

目前最流行的解决方案

  • redisson 分布式锁
  • zookeeper 分布式锁

redisson 分布式锁 实战

  • maven依赖
<dependency>
			<groupId>org.redisson</groupId>
			<artifactId>redisson-spring-boot-starter</artifactId>
			<version>3.23.3</version>
</dependency>
  • 配置文件
server:
  port: 8081

spring:
  redis:
    host: 192.168.10.10
    port: 6379


  • java代码
package com.gz.distributed.lock.service.impl;

import com.gz.distributed.lock.service.LockService;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.redisson.api.RLock;
import org.redisson.api.RedissonClient;
import org.springframework.stereotype.Service;

import java.util.concurrent.TimeUnit;

@Service
@RequiredArgsConstructor
@Slf4j
public class LockServiceImpl implements LockService {

    private final RedissonClient redisson;

    @Override
    public void testDistributedLock() throws InterruptedException {
        // 获取锁实例
        RLock lock = redisson.getLock("myLock");
        // 加锁 第一个参数 100 代表获取锁的时间  第二参数 10 代表 锁的时间,自动释放
        boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS);
        if (res) {
            try {

                log.info("hello redisson");

            } finally {
                lock.unlock();
            }
        }

    }
}

  • 原理

在探索原理之前,我想提出以下问题

1.是如何保证原子性,互斥性
2.如果锁超时了怎么办

图示:
注明:该图片来源于网络,如涉及侵权,请告知
注明:该图片来源于网络,如涉及侵权,请告知

第一步 :根据锁名字 创建锁示例

        RLock lock = redisson.getLock("myLock");

第二步:尝试加锁(核心逻辑)

        boolean res = lock.tryLock(100, 10, TimeUnit.MINUTES);public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
        long time = unit.toMillis(waitTime);
        long current = System.currentTimeMillis();
        long threadId = Thread.currentThread().getId();
        //尝试加锁,返回锁的过期时间
        Long ttl = tryAcquire(waitTime, leaseTime, unit, threadId);
        // lock acquired
        // ttl为空, 说明加锁成功,返回true
        if (ttl == null) {
            return true;
        }
        //判断获取锁是否超时
        time -= System.currentTimeMillis() - current;
        if (time <= 0) {
            acquireFailed(waitTime, unit, threadId);
            return false;
        }
        
        current = System.currentTimeMillis();
        // 订阅监听redis消息,并且创建RedissonLockEntry
        CompletableFuture<RedissonLockEntry> subscribeFuture = subscribe(threadId);
        try {
            // 阻塞等待subscribe的future的结果对象
            subscribeFuture.get(time, TimeUnit.MILLISECONDS);
        } catch (TimeoutException e) {
            if (!subscribeFuture.completeExceptionally(new RedisTimeoutException(
                    "Unable to acquire subscription lock after " + time + "ms. " +
                            "Try to increase 'subscriptionsPerConnection' and/or 'subscriptionConnectionPoolSize' parameters."))) {
                subscribeFuture.whenComplete((res, ex) -> {
                    if (ex == null) {
                        unsubscribe(res, threadId);
                    }
                });
            }
            acquireFailed(waitTime, unit, threadId);
            return false;
        } catch (ExecutionException e) {
            acquireFailed(waitTime, unit, threadId);
            return false;
        }

        try {
              //判断是否超时,如果等待超时,返回获的锁失败
、            time -= System.currentTimeMillis() - current;
            if (time <= 0) {
                acquireFailed(waitTime, unit, threadId);
                return false;
            }
             //通过while循环再次尝试竞争锁
            while (true) {
                long currentTime = System.currentTimeMillis();
                ttl = tryAcquire(waitTime, leaseTime, unit, threadId);
                // lock acquired
                if (ttl == null) {
                    return true;
                }

                time -= System.currentTimeMillis() - currentTime;
                if (time <= 0) {
                    acquireFailed(waitTime, unit, threadId);
                    return false;
                }

                // waiting for message
                currentTime = System.currentTimeMillis();
                   // 通过信号量(共享锁)阻塞,等待解锁消息.  (减少申请锁调用的频率)
                if (ttl >= 0 && ttl < time) {
                    commandExecutor.getNow(subscribeFuture).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
                } else {
                    commandExecutor.getNow(subscribeFuture).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);
                }

                time -= System.currentTimeMillis() - currentTime;
                if (time <= 0) {
                    acquireFailed(waitTime, unit, threadId);
                    return false;
                }
            }
        } finally {
            unsubscribe(commandExecutor.getNow(subscribeFuture), threadId);
        }
//        return get(tryLockAsync(waitTime, leaseTime, unit));
    }

第三步骤:lua 脚本保持原子性,互斥性

 return commandExecutor.syncedEval(getRawName(), LongCodec.INSTANCE, command,
                "if ((redis.call('exists', KEYS[1]) == 0) " +
                            "or (redis.call('hexists', KEYS[1], ARGV[2]) == 1)) then " +
                        "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                        "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                        "return nil; " +
                    "end; " +
                    "return redis.call('pttl', KEYS[1]);",
                Collections.singletonList(getRawName()), unit.toMillis(leaseTime), getLockName(threadId));

keys[1] : Collections.singletonList(getRawName()) 就是锁的名称
ARGV[1]: leaseTime 租约时间
ARGV[2]:getLockName(threadId) = UUID.randomUUID().toString()+线程id

lua脚本:
判断该锁是否存在,存在则返回锁的租约时间,不存在设置过期时间,锁加1(就是锁重入)

在这里插入图片描述
注明:该图片来源于网络,如涉及侵权,请告知
缺点:

客户端1 对某个master节点写入了redisson锁,此时会异步复制给对应的 slave节点。但是这个过程中一旦发生
master节点宕机,主备切换,slave节点从变为了 master节点。

这时客户端2 来尝试加锁的时候,在新的master节点上也能加锁,此时就会导致多个客户端对同一个分布式锁完成了加锁。

这时系统在业务语义上一定会出现问题,导致各种脏数据的产生。

缺陷在哨兵模式或者主从模式下,如果 master实例宕机的时候,可能导致多个客户端同时完成加锁。

zookeeper 分布式锁 实战

  • maven 依赖
	<dependency>
			<groupId>org.springframework.integration</groupId>
			<artifactId>spring-integration-zookeeper</artifactId>
			<version>5.5.18</version>
		</dependency>
  • config
/**
 * zookeeper lock config
 */
@Configuration
public class ZookeeperLockConfiguration {
    /**
     * 注册表
     * @param curatorFramework
     * @return
     */
    @Bean
    public ZookeeperLockRegistry zookeeperLockRegistry(CuratorFramework curatorFramework) {
        return new ZookeeperLockRegistry(curatorFramework, "/locks");
    }

    /**
     * 客户端
     * @return
     * @throws Exception
     */
    @Bean
    public CuratorFramework curatorFramework() throws Exception {
        return CuratorFrameworkFactory.newClient("127.0.0.1:2181", new RetryUntilElapsed(1000, 4));
    }

}
  • java代码
    public void testZookeeperLock() {
        Lock lock = zookeeperLockRegistry.obtain("my-lock");
        if (lock.tryLock()) {
            try {
                log.info("hello testZookeeperLock");
            } finally {
                lock.unlock();
            }
        }

    }
  • 原理

利用 Zookeeper 节点的临时性:当一个进程崩溃或断开连接时,它创建的节点会被自动删除
利用 Zookeeper 节点的顺序性:Zookeeper 中的节点有序排列,每个节点都有一个唯一的编号。进程获取锁时,会创建一个带有序号的节点,然后判断自己是否是最小的节点。如果是最小的节点,则获取锁成功;否则,进程需要等待

结论

zookeeper 是强一致性,不保证服务可用性,主从切换时,服务都不可用
redisson 不保证数据一致性,会出现访问同一资源不安全性发生

根据不同业务应用场景,项目架构选择不同技术方案实现

代码地址

https://gitee.com/GZ-jelly/microservice-sample

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我叫果冻

你的鼓励将是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值