pytorch里面的maxpool,有一个属性叫ceil_mode,这个属性在api里面的解释是
ceil_mode: when True, will use
ceil
instead offloor
to compute the output shape
也就是说,在计算输出的shape的时候,如果ceil_mode
的值为True,那么则用天花板模式,否则用地板模式。
???
举两个例子就明白了。
# coding:utf-8
import torch
import torch.nn as nn
from torch.autograd import Variable
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.maxp = nn.MaxPool2d(kernel_size=2, ceil_mode=False)
def forward(self, x):
x = self.maxp(x)
return x
square_size = 6
inputs = torch.randn(1, 1, square_size, square_size)
for i in range(square_size):
inputs[0][0][i] = i * torch.ones(square_size)
inputs = Variable(inputs)
print(inputs)
net = Net()
outputs = net(inputs)
print(outputs.size())
print(outputs)
在上面的代码中,无论ceil_mode是True or False,结果都是一样
但是如果设置square_size=5,那么
当ceil_mode=True
Variable containing:
(0 ,0 ,.,.) =
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
[torch.FloatTensor of size 1x1x5x5]
torch.Size([1, 1, 3, 3])
Variable containing:
(0 ,0 ,.,.) =
1 1 1
3 3 3
4 4 4
[torch.FloatTensor of size 1x1x3x3]当ceil_mode=False
Variable containing:
(0 ,0 ,.,.) =
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
[torch.FloatTensor of size 1x1x5x5]
torch.Size([1, 1, 2, 2])
Variable containing:
(0 ,0 ,.,.) =
1 1
3 3
[torch.FloatTensor of size 1x1x2x2]
所以ceil模式就是会把不足square_size的边给保留下来,单独另算,或者也可以理解为在原来的数据上补充了值为-NAN的边。而floor模式则是直接把不足square_size的边给舍弃了。