pytorch maxpool和卷积尺寸问题

本文探讨了PyTorch中,当输入尺寸为奇数或偶数时,MaxPool操作与卷积可能导致的输出尺寸不一致问题。针对此情况,分析了padding为1和0时的不同效果,并指出即使使用padding也无法确保完全对齐。详细内容可参考链接:https://blog.csdn.net/jacke121/article/details/104020945。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果输入是奇数时,输出尺寸不一致。

如果是偶数,则会一致,但是不是4的倍数,下采样时,又可能会出现不一致的情况。

padding为1时,偶数与maxpool对的上,奇数对不上

padding为0时,奇数与maxpool对的上,偶数对不上

解决:

nn.MaxPool2d(kernel_size=2,stride=2,ceil_mode=True) 与padding为1对的上

为false还是无法对的上

maxpoolpadding为1时,则偶数结果也是 /2+1

out = nn.MaxPool2d(kernel_size=2,stride=2,padding=1)

https://blog.csdn.net/jacke121/article/details/104020945


                
### 常见的 PyTorch 卷积神经网络模型设计与实现 在 PyTorch 中构建卷积神经网络(CNN),通常会涉及多个核心组件的设计与组合,这些组件包括但不限于 `nn.Module` 的使用、卷积层、池化层、激活函数以及全连接层等[^1]。 #### 1. **基本骨架——`nn.Module`** PyTorch 提供了一个灵活的基础类 `nn.Module` 来定义自定义神经网络架构。通过继承该类并重写其方法(如 `__init__` `forward` 方法),可以轻松创建复杂的 CNN 模型。例如: ```python import torch.nn as nn class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() # 定义卷积其他模块 self.conv_layers = nn.Sequential( nn.Conv2d(1, 32, kernel_size=5, stride=1), # 输入通道数为1,输出通道数为32 nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Conv2d(32, 64, kernel_size=3, stride=1), # 输出通道数变为64 nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) self.fc_layer = nn.Linear(64 * 5 * 5, 10) # 全连接层 def forward(self, x): out = self.conv_layers(x) out = out.view(out.size(0), -1) # 展平处理 out = self.fc_layer(out) return out ``` 上述代码展示了如何利用 `nn.Module` 构建一个简单的两层卷积神经网络,并结合 ReLU 非线性激活函数最大池化操作来提取特征[^2]。 --- #### 2. **卷积层与池化层的作用** 卷积层的核心功能是对输入数据应用一系列可学习的滤波器(即卷积核)以检测局部模式;而池化层则用于降低空间维度,减少计算量的同时保留重要信息。两者共同构成了 CNN 的主要隐藏层结构[^2]。 具体来说,在设计卷积层时需要注意以下几个参数的选择: - **卷积核数量**:初始阶段建议从小规模开始(如 32 或者更少),随着层数加深逐步增大。 - **卷积尺寸**:对于灰度图片或者简单场景下的特征提取,可以选择较大的窗口(比如 \(5 \times 5\)),后续再逐渐缩小至 \(3 \times 3\)[^3]。 - **步幅(stride)**:默认情况下设为 1 是较为常见的做法。 - **零填充(padding)**:可以通过调整 padding 参数保持原始分辨率不变或控制最终输出形状。 --- #### 3. **非线性激活函数的应用** 为了增强模型表达能力,引入非线性变换至关重要。ReLU 函数作为最广泛使用的激活函数之一,因其高效性易于优化的特点被普遍采用。它能够有效缓解梯度消失问题,促进深层网络的学习过程[^4]。 以下是 ReLU 在实际中的调用方式: ```python activation_function = nn.ReLU() output = activation_function(input_tensor) ``` 除此之外,还有其他类型的激活函数可供选择,例如 Sigmoid、Tanh 等,但在现代深度学习实践中,ReLU 及其变体往往表现更好。 --- #### 4. **全连接层的功能描述** 经过若干次卷积与池化的预处理之后,得到的是低维向量形式的数据表示。此时需借助全连接层完成分类或其他特定任务目标。假设最后一轮卷积后的张量大小为 \(C \times H \times W\) ,那么展平后送入 FC Layer 进行映射即可得出预测结果。 示例代码片段如下所示: ```python flattened_input = input_tensor.view(batch_size, -1) fc_output = fully_connected(flattened_input) ``` 其中 `-1` 表达自动推导剩余维度长度的意思。 --- ### 总结 综上所述,基于 PyTorch 实现标准 CNN 主要围绕着几个关键要素展开讨论,分别是基础框架搭建(`nn.Module`)、逐级深入挖掘图像内部规律(卷积+池化),最后经由密集关联节点做出决策判断(全连接层)。整个流程环环相扣缺一不可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值